Math, asked by dheerajkashyap170884, 1 month ago

differentiate pls solve​

Attachments:

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{y=\dfrac{\sqrt{x^2-a^2}}{x}}

\sf{Put\,\,\,x=a\,sec(\theta)}

Differentiating it w.r.t. θ

\sf{\implies\,\dfrac{dx}{d\theta}=a\,sec(\theta)\,tan(\theta)\,\,\,\,\,\,\,\,...(1)}

Now,

\sf{y=\dfrac{\sqrt{(a\,sec(\theta))^2-a^2}}{a\,sec(\theta)}}

\sf{\implies\,y=\dfrac{\sqrt{a^2\,sec^2(\theta)-a^2}}{a\,sec(\theta)}}

\sf{\implies\,y=\dfrac{\sqrt{a^2\,(sec^2(\theta)-1)}}{a\,sec(\theta)}}

\sf{\implies\,y=\dfrac{a\sqrt{(sec^2(\theta)-1)}}{a\,sec(\theta)}}

\sf{\implies\,y=\dfrac{\sqrt{tan^2(\theta)}}{sec(\theta)}}

\sf{\implies\,y=\dfrac{tan(\theta)}{sec(\theta)}}

\sf{\implies\,y=sin(\theta)}

Differentiating it w.r.t. θ

\sf{\implies\,\dfrac{dy}{d\theta}=cos(\theta)\,\,\,\,\,\,\,\,\,...(2)}

Divide (2) by (1),

\sf{\dfrac {dy}{dx}=\dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}}=\dfrac{cos(\theta)}{a\,sec(\theta)\,tan(\theta)}}

\sf{\implies\dfrac {dy}{dx}=\dfrac{1}{a\,sec^2(\theta)\,tan(\theta)}}

\sf{Since,\,\,\,sec(\theta)=\dfrac{x}{a}}\\\\\sf{So,\,\,\,tan(\theta)=\sqrt{\bigg(\dfrac{x}{a}\bigg)^2-1}}

\sf{\implies\dfrac {dy}{dx}=\dfrac{1}{a\,\bigg(\dfrac{x}{a}\bigg)^2\,\sqrt{\bigg(\dfrac{x}{a}\bigg)^2-1}}}

\sf{\implies\dfrac {dy}{dx}=\dfrac{a}{x^2\,\sqrt{\dfrac{x^2-a^2}{a^2}}}}

\sf{\implies\dfrac {dy}{dx}=\dfrac{a^2}{x^2\,\sqrt{x^2-a^2}}}

Similar questions