Math, asked by anushadhalayat0987, 9 months ago

Differentiate sin^-1 (2^x+1/1+4^x)
with respect to x

Answers

Answered by pulakmath007
21

\displaystyle\huge\red{\underline{\underline{Solution}}}

We are aware of the Trigonometric formula that

FORMULA TO BE IMPLEMENTED

 \displaystyle \:  \sin 2  \theta \:  =  \frac{2 \tan \theta}{1 +  { \tan}^{2} \theta}

TO DIFFERENTIATE

  \displaystyle \:  { \sin}^{ - 1}  \bigg( \frac{ {2}^{x + 1} }{1 +  {4}^{x} }  \bigg)

EVALUATION

Let

 y = \displaystyle \:  { \sin}^{ - 1}  \bigg( \frac{ {2}^{x + 1} }{1 +  {4}^{x} }  \bigg)

 =  \displaystyle \:  { \sin}^{ - 1}  \bigg( \frac{ 2 \times {2}^{x} }{1 +   {( {2}^{x} )}^{2}  }  \bigg) \:  \: ...(1)

Let

 {2}^{x}   = \tan \theta

So that

 \theta =   { \tan}^{ - 1} ( {2}^{x} )

Therefore From Equation (1)

 y = \displaystyle \:   { \sin}^{ - 1}   \bigg( \frac{2 \tan \theta}{1 +  { \tan}^{2} \theta} \bigg)

 \implies \: y =   { \sin}^{ - 1} ( \sin 2 \theta)

 \implies \: y =   2 \theta

 \implies \: y = 2  { \tan}^{ - 1} ( {2}^{x} )

Differentiating both sides with respect to x

 \displaystyle \:  \frac{dy}{dx}  = 2 \times  \frac{ {2}^{x}  \ln2}{1 +  {( {2}^{x}) }^{2} }

 \implies \:  \displaystyle \:  \frac{dy}{dx}  =  \frac{ {2}^{x + 1}  \ln2}{1 +  {4}^{x} }

RESULT

The required answer is

 \boxed{ \sf{ \:   \:  \displaystyle \:    \frac{ {2}^{x + 1}  \ln2}{1 +  {4}^{x} }  \:  \:  \: }}

Similar questions