Math, asked by SujayKumar9403, 9 months ago

Differentiate sin ^-1( 2ax√1- a^2x^2 with respect to cos^-1{√1-a^2x^2}

Answers

Answered by hukam0685
0

Step-by-step explanation:

Given that:

Differentiate sin ^-1( 2ax√1- a^2x^2 with respect to cos^-1{√1-a^2x^2}

Solution:

To differentiate

 {sin}^{ - 1} (2ax \sqrt{1 -  {a}^{2} {x}^{2}  } ) \\ w.r.t. \\  {cos}^{ - 1} ( \sqrt{1 -  {a}^{2}  {x}^{2} } ) \\

Let

\bold{u = {sin}^{ - 1} (2ax \sqrt{1 -  {a}^{2} {x}^{2}  } ) }\\ and \\\bold{v =   {cos}^{ - 1} ( \sqrt{1 -  {a}^{2}  {x}^{2} } )} \\

now find du/dx and dv/dx

let  \\ \: sin \alpha  = ax \\  so \\   cos \:  \alpha  =  \sqrt{1 -  {a}^{2}  {x}^{2} }  \\

put these values in u and v

u =  {sin}^{ - 1} (2 \sin \alpha  \cos\alpha ) \\  \\ sin2 \alpha  = 2 \sin \alpha  \cos\alpha \\  \\ u =  {sin}^{ - 1} (sin \: 2 \alpha ) \\  \\ u = 2 \alpha  \\

put the value of alpha from assumption in terms of sin inverse

u = 2 {sin}^{ - 1} (ax) \\  \\ differentiate \: u \: wrt \: x \\  \\ \bold{ \frac{du}{dx}  =  \frac{2a}{ \sqrt{1 -  {a}^{2} {x}^{2}  } } } \:  \:  \:  \:  \: ....eq1 \\

By the same way Differentiation v with respect to x,after substitution and simplification

v =  {cos}^{ - 1} ( \sqrt{1 -  {sin}^{2}  \alpha } ) \\  \\ v =  {cos}^{ - 1} (cos \alpha ) \\  \\ v =  \alpha  \\  \\ v =  {sin}^{ - 1} (ax) \\  \\ differentiate \: v \: wrt \: to \: x \\  \\  \bold{\frac{dv}{dx}  =  \frac{a}{ \sqrt{1 -  {a}^{2} {x}^{2}  } }}   \:  \:  \:  \: ..eq2\\

Now divide eq1 by eq2

 \frac{du}{dv}  =  \frac{du}{dx}  \times  \frac{dx}{dv}  \\  \\  =  \frac{2a}{ \sqrt{1 -  {a}^{2} {x}^{2}  } } \times  \frac{ \sqrt{1 -  {a}^{2}  {x}^{2} } }{a}  \\  \\  \bold{\frac{du}{dv} = 2} \\  \\

Hope it helps you.

Answered by charisma47
1

Answer:

du/dv=2

...............

Similar questions