Differentiate sin−1(2x√1−x2) w.r.t. cos−1(1−x21+x2).
Answers
Answer:
(1 + x² ) / √(1 - x² )
Step-by-step explanation:
I think question is like this
Differentiate Sin⁻¹ (2x √1-x² ) w.r.t.
Cos⁻¹ ( 1 - x² / 1 + x² )
Solution--->
Let
y₁ = Sin⁻¹ { 2x √( 1 - x² ) }
Let x = Sinα => α = Sin⁻¹ x
y₁ = Sin⁻¹ { 2 Sinα √( 1 - Sin²α ) }
= Sin⁻¹ ( 2 Sinα √ Cos²α )
= Sin⁻¹ ( 2 Sinα Cosα )
= Sin⁻¹ ( Sin 2α )
= 2 α
Putting α = Sin⁻¹x we get
y₁ = 2 Sin⁻¹x
Differentiating with respect to x
dy₁ / dx = 2 d / dx ( Sin⁻¹x )
= 2 { 1 /√(1 - x²) }
Now
y₂ = Cos⁻¹ (1 - x² / 1 + x² )
Let x = tanβ => β = tan⁻¹ x
y₂ = Cos⁻¹ ( 1- tan²β / 1 + tan²β )
We have a formula
Cos2β = 1 - tan²β / 1 + tan²β
Applying it here we get
= Cos⁻¹ ( Cos 2β )
= 2β
Putting β = tan⁻¹x we get
y₂ = 2 tan⁻¹ x
Differentiating with respect to x
dy₂ / dx = 2 d / dx (tan⁻¹ x )
= 2 ( 1 / 1 + x² )
Now we have to differentiate y₁ with respect to y₂
dy₁ / dx
dy₁ / dy₂ = ---------------
dy₂ / dx
Putting value of dy₁/dx and dy₂/dx we get
2 / √( 1 - x² )
= -----------------------
2 / (1 + x² )
dy₁/dy₂= (1 + x² ) / √(1 - x² )