Differentiate sin^2x
from first principles
Answers
AnswEr:-
From first principles,
=> sin² (0)(0)(cos 0 +1 ) + 2 sinx (cos 0)cosx(1) +cos°(1)sin0
= 0 + 2sinx cosx + 0
= 2sinx cosx.
________________________________________________
Step-by-step explanation:
The definition of the derivative of y=f(x) is
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So with f(x) = sin^2x then;
f'(x)=lim_(h rarr 0) {sin^2(x+h) -sin^2(x)}/h
Let us focus on the numerator f(x+h)-f(x);
f(x+h)-f(x)
\ \ = sin^2(x+h) -sin^2(x)
\ \ = (sinxcos h+cosxsin h)^2 -sin^2(x)
\ \ = (sinxcos h)^2+2sinxcos hcosxsin h + (cosxsin h)^2 -sin^2(x)
\ \ = sin^2xcos^2h+2sinxcos hcosxsin h + cos^2xsin^2h -sin^2x
\ \ = sin^2xcos^2h+2sinxcos hcosxsin h + cos^2xsin^2h -sin^2x
\ \ = sin^2x(cos^2h-1)+2sinxcos hcosxsin h + cos^2xsin^2h
\ \ = sin^2xsin^2h+2sinxcos hcosxsin h + cos^2xsin^2h
\ \ = sin^2h(sin^2x+cos^2x) + 2sinxcos hcosxsin h
\ \ = sin^2h+ 2sinxcos hcosxsin h
And so the limit becomes:
f'(x)=lim_(h rarr 0) {sin^2h+ 2sinxcos hcosxsin h}/h
" "=lim_(h rarr 0) {sin^2h/h+ (2sinxcos hcosxsin h)/h}
" "=lim_(h rarr 0) {sin h * sin h/h+ 2sinxcosx*cos h*sin h/h}
And then using the Fundamental trigonometric calculus limits:
lim_(theta rarr0) sin theta /theta = 1
we have:
f'(x)= 0 * 1+ 2sinxcosx*1*1
" "=2sinxcosx