Math, asked by ZiahPrincess9435, 1 month ago

Differentiate sin cube of x from first principles

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let  y=f(x)=\sin^3(x)

Now,

 {f}^{ \prime} (x)  =  \lim_{h \rarr0}  \frac{f(x + h) - f(x)}{h} \\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}  \frac{ \sin ^{3} (x + h) -  \sin^{3} (x)}{h} \\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}  \frac{  \{\sin(x + h) -  \sin (x) \} \{  \sin^{2} (x + h) +\sin(x + h)\sin(x) +  \sin^{2} (x) \}}{h} \\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}  \frac{  \{\sin(x + h) -  \sin (x) \}}{h}. \lim_{h \rarr0} \{  \sin^{2} (x + h) +\sin(x + h)\sin(x) +  \sin^{2} (x) \}\\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}   \bigg \{\frac{  \sin(x )  \cos(h) +  \cos(x) \sin(h)   -  \sin (x) }{h} \bigg \}. \lim_{h \rarr0} \{  \sin^{2} (x + h) +\sin(x + h)\sin(x) +  \sin^{2} (x) \}\\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}   \bigg \{\frac{  \sin(x ) ( \cos(h) - 1) +  \cos(x) \sin(h)    }{h} \bigg \}. \lim_{h \rarr0} \{  \sin^{2} (x + h) +\sin(x + h)\sin(x) +  \sin^{2} (x) \}\\

 \implies {f}^{ \prime} (x)  =  \lim_{h \rarr0}   \bigg \{\frac{  \sin(x ) ( \cos(h) - 1)}{h} +   \frac{\cos(x) \sin(h) }{h}    \bigg \}. \{  \sin^{2} (x + 0) +\sin(x + 0)\sin(x) +  \sin^{2} (x) \}\\

 \implies {f}^{ \prime} (x)  =     \bigg \{ \lim_{h \rarr0} \frac{  \sin(x ) ( \cos(h) - 1)}{h} + \lim_{h \rarr0} \frac{\cos(x) \sin(h) }{h}    \bigg \}. \{  \sin^{2} (x) +\sin(x)\sin(x) +  \sin^{2} (x) \}\\

 \implies {f}^{ \prime} (x)  =     \bigg \{  \sin(x) .\lim_{h \rarr0} \frac{   \cos(h) - 1}{h} +  \cos(x). \lim_{h \rarr0} \frac{ \sin(h) }{h}    \bigg \}. 3\sin^{2} (x)\\

 \implies {f}^{ \prime} (x)  = 3 \sin^{2} (x)   .  \bigg \{  \sin(x) .\lim_{h \rarr0} \frac{   \frac{d}{dh} ( \cos(h) - 1)}{ \frac{d}{dh}( h)} +  \cos(x).1   \bigg \}\\

 \implies {f}^{ \prime} (x)  = 3 \sin^{2} (x)   .  \bigg \{  \sin(x) .\lim_{h \rarr0} \frac{   - \sin(h) }{1} +  \cos(x)  \bigg \}\\

 \implies {f}^{ \prime} (x)  = 3 \sin^{2} (x)   .  \bigg \{ -   \sin(x) .  \sin(0)  +  \cos(x)  \bigg \}\\

 \implies {f}^{ \prime} (x)  = 3 \sin^{2} (x)   .  \bigg \{0  +  \cos(x)  \bigg \}\\

 \implies {f}^{ \prime} (x)  = 3 \sin^{2} (x)   .  \cos(x)  \\

Similar questions