Math, asked by kathir2606, 4 days ago

differentiate sin x /1+tanx​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{sinx}{1 + tanx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}\bigg[ \dfrac{sinx}{1 + tanx}\bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u \: - \: u\dfrac{d}{dx}v}{ {v}^{2} }}}}

So, here,

\red{\rm :\longmapsto\:u = sinx}

\red{\rm :\longmapsto\:v = 1 + tanx}

Now, on substituting the values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{(1 + tanx)\dfrac{d}{dx}sinx - sinx\dfrac{d}{dx}(1 + tanx)}{ {(1 + tanx)}^{2} }

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}}

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}sinx = cosx}}}

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}k = 1}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{(1 + tanx)(cosx) - sinx(0 +  {sec}^{2}x) }{ {(1 + tanx)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{\bigg(1 + \dfrac{sinx}{cosx}\bigg )(cosx) - sinx(0 +  {sec}^{2}x) }{ {(1 + tanx)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cosx + sinx - sinx \: {sec}^{2}x}{ {(1 + tanx)}^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions