Math, asked by shyamal1022, 10 months ago

differentiate sinx with respect to e^x​

Answers

Answered by kuldeep20941
1

Answer:

See The Attachment My Friend.......

Attachments:
Answered by Sharad001
40

Answer :-

\implies  \boxed{\sf{  \frac{dy}{dt}  =  \frac{ \cos x}{ {e}^{x}}}} \\   \bf{ or} \\  \implies  \boxed{\sf{  \frac{d (\sin x)}{d ( {e}^{x} )}  =  \frac{ \cos x}{ {e}^{x} } }} \:

Explanation :-

 \implies \sf{let \: y \:  =  \sin x} \\  \\  \sf{differentiate \: with \: respect \: to \: x} \\  \\  \implies  \sf{ \frac{dy}{dx}  =  \frac{d}{dx}  \cos x \: } \:   \\  \boxed{ \sf{\:  \because \:  \frac{d}{d x}  \sin x =  \cos x}} \\  \\  \implies \sf{ \frac{dy}{dx}  =  \cos x \:  \:  \:........  \: eq.(1)}

again let ,

 \to \sf{ t \:  =  {e}^{x} } \\  \\ \sf{ differentiate \: with \: respect \: to \: x} \\  \\  \implies \sf{ \frac{dt}{dx}  =  \frac{d}{dx}  {e}^{x} } \\  \\  \implies \sf{ \frac{dt}{dx}  =  {e}^{x}  \:  \: .....eq.(2)} \\  \\ \sf{ apply \to  \frac{eq.(1)}{eq.(2)} } \\  \\  \implies \sf{  \frac{ \frac{dy}{dx} }{ \frac{dt}{dx} }  =  \frac{ \cos x}{ {e}^{x} } } \\  \\  \implies  \boxed{\sf{  \frac{dy}{dt}  =  \frac{ \cos x}{ {e}^{x}}}} \\   \bf{ or} \\  \implies  \boxed{\sf{  \frac{d (\sin x)}{d ( {e}^{x} )}  =  \frac{ \cos x}{ {e}^{x} } }}

Similar questions