Math, asked by shreyaravi2004, 2 months ago

Differentiate sinx+x²/cot2x.​

Answers

Answered by kkunjlatadutta
1

Step-by-step explanation:

`y=((sinx+x^2)/(cot2x))`

Answered by ydeepakyadava
0

Step-by-step explanation:

Step-by-step explanation:y=(x

Step-by-step explanation:y=(x 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dx

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdx

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dx

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec 2

Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec 2 2x.sinx+tan2x.2x+tan2x.cosx.

Similar questions