Differentiate sinx+x²/cot2x.
Answers
Step-by-step explanation:
`y=((sinx+x^2)/(cot2x))`
Step-by-step explanation:
Step-by-step explanation:y=(x
Step-by-step explanation:y=(x 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dx
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdx
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dx
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec 2
Step-by-step explanation:y=(x 2 +sinx)(tan2x)dxdxdy =(x 2 +sinx)(2sec 2 2x)+(tan2x)(2x+cosx)dxdy =2sec 2 2x.x 2 +2sec 2 2x.sinx+tan2x.2x+tan2x.cosx.