Math, asked by anshi60, 11 months ago

differentiate tan^-1 [√1+a^2x^2 -1÷ax]​

Answers

Answered by Anonymous
21

Answer:

given function is

y =  {tan}^{ - 1} ( \frac{ \sqrt{1 +  {a}^{2} {x}^{2}   } - 1 }{ax} )

let us put ax = tan theta, then theta = tan^(-1)ax

therefor,

y =  {tan}^{ - 1} ( \frac{ \sqrt{1 + {tan}^{2} theta}  - 1}{tantheta} )

 =  {tan}^{ - 1} ( \frac{ \sqrt{ {sec}^{2}theta }  - 1}{tan \: theta} )

 =  {tan}^{ - 1} ( \frac{sec \: theta - 1}{tan \: theta} )

 =  {tan}^{ - 1} ( \frac{ \frac{1}{cos \: theta}  - 1}{ \frac{sin \: theta}{cos \: theta} } )

 =  {tan}^{ - 1} ( \frac{1 - cos \: theta}{sin \: theta} )

= {tan}^{ - 1} ( \frac{2 {sin}^{2}  \frac{theta}{2} }{2sin \frac{theta}{2} \times cos \frac{theta}{2}  } )

 =  {tan}^{ - 1} (tan \frac{theta}{2})

 =  \frac{theta}{2}

Now put the value of theta ,Therefor the equation becomes,

y =  \frac{1}{2}  {tan}^{ - 1} (ax)

Differentiate wrt x

 \frac{dy}{dx}  =  \frac{d}{dx} ( \frac{1}{2}  {tan}^{ - 1} (ax))

 =  \frac{1}{2}  \frac{d}{dx} ( {tan}^{ - 1} (ax))

 =  \frac{1}{2}  \times  \frac{1}{1 +  ({ax})^{2} }   \times  \frac{d}{dx} (ax)

 =  \frac{1}{2(1 +  {a}^{2} {x}^{2})  }  \times a

Therefor,

 \frac{dy}{dx}  =  \frac{1}{2} ( \frac{a}{1 +  {a}^{2} {x}^{2}  } )

______________________________


anshi60: its very helpful for me thanks
Anonymous: wellcome :-)
Answered by afzalkamal169
1

Step-by-step explanation:

step by step explanations

Attachments:
Similar questions