Math, asked by limnamathew7655, 1 year ago

Differentiate tan−1(2x1−x2) with respect to sin−1(2x1+x2)?

Answers

Answered by FaisalRajput1
3
Dear Student,

Let u=tan−1(1+x2√−1x) and v=tan−1(x)Put x = tan θNow, u = tan−1[1 + tan2θ√ − 1tan θ]⇒u = tan−1[sec θ − 1tan θ]⇒u = tan−1[1 − cos θsin θ]⇒u = tan−1[2 sin2(θ/2)2 sin(θ/2) . cos(θ/2)]⇒u = tan−1[tan(θ/2)] = θ2 = 12tan−1x⇒dudx = 12.11+x2Now, v =tan−1x⇒v = tan−1[tan θ]⇒v = θ⇒v =tan−1x⇒dvdx = 11+x2Now, dudv = dudx×dxdv = 12.11+x2 × 1+x21 = 12

Hope this information will clear your doubts about topic.

If you have more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards
 
Similar questions