Math, asked by sweetie2912, 13 days ago

differentiate tan^(-1)(secx+tanx)w.r.to x is

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \tan^{ - 1}  \bigg(  \sec(x) +  \tan(x)    \bigg)  \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{  1+   \sin(x) }{ \cos(x) }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{  1+   2\sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }{ \cos^{2} ( \frac{x}{2} )  -  \sin^{2} ( \frac{x}{2} ) }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{\cos^{2} ( \frac{x}{2} )   +   \sin^{2} ( \frac{x}{2} )  +   2\sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }{ \cos^{2} ( \frac{x}{2} )  -  \sin^{2} ( \frac{x}{2} ) }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{(\cos ( \frac{x}{2} )   +   \sin ( \frac{x}{2} ))^{2}  }{ (\cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} ))( \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ))  }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{\cos ( \frac{x}{2} )   +   \sin ( \frac{x}{2} )  }{ \cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2})   }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{1   +   \tan ( \frac{x}{2} )  }{ 1  -  \tan ( \frac{x}{2})   }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\frac{  \tan(\frac{\pi}{4} )   +   \tan ( \frac{x}{2} )  }{ 1  -  \tan( \frac{\pi}{4} )  \tan ( \frac{x}{2})   }    \bigg \} \\

 \implies \: y =  \tan^{ - 1}  \bigg \{\tan \bigg(\frac{\pi}{4}  +  \frac{x}{2}  \bigg)   \bigg \} \\

 \implies \: y =   \frac{\pi}{4}  +  \frac{x}{2}  \\

 \implies \:  \frac{dy}{dx}  =    \frac{1}{2}  \\

Similar questions