Math, asked by monaligujar08, 6 hours ago

differentiate tan^-1 x+cot^-1 x with respect x​

Answers

Answered by TheHelper01
0

Answer:

 y = \tan {}^{ - 1} x +  \cot  {}^{ - 1} x

Differnatatiating with respect x

 \frac{dy}{dx}  =  \frac{d( \tan  {}^{ - 1}  x)}{dx}  +  \frac{d( \cot {}^{ - 1}  x)}{dx}

 \frac{dy}{dx}  =  \frac{1}{1 + x {}^{2} }  + ( -  \frac{1}{1 + x {}^{2} } )

 \frac{dy}{dx}  =  \frac{1}{1 + x {}^{2} }  -  \frac{1}{1 + x {}^{2} }

 \frac{dy}{dx}  = 0

____________________

Note :

 \tan {}^{ - 1} x =  \frac{1}{1 + x {}^{2} }

 \cot  {}^{ - 1} x =  -  (\frac{1}{1 + x {}^{2} } )

The value

 \tan {}^{ - 1} x + \cot {}^{ - 1} x = 1

____________________

Be Brainly!

Similar questions