Math, asked by ritikmor999, 11 months ago

Differentiate - Tan^-1 [(x sin alpha) /(1-x cos alpha) ]

Answers

Answered by dhimanmehak147
1

Step-by-step explanation:

in given picture there is correct answer of question given above

Attachments:
Answered by Rameshjangid
0

Answer:

\frac{dy}{dx}=\frac{sin\alpha }{1-2xcos\alpha +x^2}

Given:

Differentiate - Tan^-1 [(x sin alpha) /(1-x cos alpha) ]

To find :

Differentiate - Tan^-1 [(x sin alpha) /(1-x cos alpha) ]

Solution :

y= tan^-1 (\frac{xsin\alpha }{1-xcos\alpha } )

Differentiate with respect to x

\frac{dy}{dx} =\frac{1}{1+(\frac{xsin\alpha }{1-xcos\alpha } )^2} *\frac{d}{dx}(\frac{xsin\alpha }{1-xcos\alpha }  )

\frac{dy}{dx}=\frac{1}{1+\frac{x^2sin\alpha }{(1-xcos\alpha )^2} }  *\frac{(1-xcos\alpha)\frac{d}{dx}(xsin\alpha )-[(xsin\alpha )\frac{d}{dx} (1-xcos\alpha )]  }{1-xcos\alpha }

\frac{dy}{dx}=\frac{(1-xcos\alpha )^2}{(1-xcos\alpha )^2+x^2sin^2\alpha }*\frac{(1-xcos\alpha )sin\alpha -[(xsin\alpha )(0-cos\alpha )}{(1-xcos\alpha )^2}

\frac{dy}{dx}=\frac{sin\alpha -xcos\alpha .sin\alpha +xcos\alpha .sin\alpha  }{1+x^2cos^2\alpha -2xcos\alpha +x^2sin^2\alpha }

\frac{dy}{dx}=\frac{sin\alpha }{1-2xcos\alpha +x^2(cos^2\alpha +sin^2\alpha )}

\frac{dy}{dx}=\frac{sin\alpha }{1-2xcos\alpha +x^2}

To know more about differentiation refer :

https://brainly.com/question/24062595

https://brainly.com/question/24898810

#SPJ2

Similar questions