Math, asked by borudem40, 3 days ago

differentiate tan 3x+4​

Answers

Answered by dikshachavan258
1

Step-by-step explanation:

lim

θ

tanθ

=1

\displaystyle\tan(A+B) = \frac{\tan A+\tan B}{1-\tan A\tan B}tan(A+B)=

1−tanAtanB

tanA+tanB

Then

\begin{gathered}\displaystyle\frac{d}{dx}\tan(3x+4) = \lim_{h\rightarrow0}\frac1h\left[\tan(3(x+h)+4)-\tan(3x+4)\right] \\ \\=\lim_{h\rightarrow0}\frac1h\left[\frac{\tan(3x+4)+\tan(3h)}{1-\tan(3x+4)\tan(3h)}-\tan(3x+4)\right] \\ \\=\lim_{h\rightarrow0}\frac1h\left[\frac{\tan(3x+4)+\tan(3h)-\tan(3x+4)+\tan^2(3x+4)\tan(3h)}{1-\tan(3x+4)\tan(3h)}\right] \\ \\=\lim_{h\rightarrow0}\frac{\tan(3h)}h\left[\frac{1+\tan^2(3x+4)}{1-\tan(3x+4)\tan(3h)}\right]\end{gathered}

dx

d

tan(3x+4)=

h→0

lim

h

1

[tan(3(x+h)+4)−tan(3x+4)]

=

h→0

lim

h

1

[

1−tan(3x+4)tan(3h)

tan(3x+4)+tan(3h)

−tan(3x+4)]

=

h→0

lim

h

1

[

1−tan(3x+4)tan(3h)

tan(3x+4)+tan(3h)−tan(3x+4)+tan

2

(3x+4)tan(3h)

]

=

h→0

lim

h

tan(3h)

[

1−tan(3x+4)tan(3h)

1+tan

2

(3x+4)

]

\begin{gathered}\displaystyle=\lim_{h\rightarrow0}\frac{\tan(3h)}h\left[\frac{1+\tan^2(3x+4)}{1-\tan(3x+4)\tan(3h)}\right] \\ \\=\lim_{h\rightarrow0}3\times\frac{\tan(3h)}{3h}\times\frac{\sec^2(3x+4)}{1-\tan(3x+4)\tan(3h)}\\ \\= 3\times 1\times \frac{\sec^2(3x+4)}{1-0}\\ \\=3\sec^2(3x+4)\end{gathered}

=

h→0

lim

h

tan(3h)

[

1−tan(3x+4)tan(3h)

1+tan

2

(3x+4)

]

=

h→0

lim

3h

tan(3h)

×

1−tan(3x+4)tan(3h)

sec

2

(3x+4)

=3×1×

1−0

sec

2

(3x+4)

=3sec

2

(3x+4)

Hope it helps you

please mark me as brainliest

Similar questions