differentiate tan inverse of [root of 1+sinx/1-sinx] w.r.t tan inverse (of root of 1+x2 +x)
Answers
Answered by
0
y=√((1-sinx)/(1+sinx))
1-sinx/1-sinx=
= 1-cos(90-x)/1+cos(90-x)
= 1-1+2Sin2(45-(x/2))/1+2cos2(45-(x/2))-1
= [tan(45-x/2)]2
hence y= [tan2(45-x/2)]1/2
y= tan (45-x/2)
dy/dx= sec2(45-x/2) . {0-1/2}
dy/dx= -0.5sec2(45-x/2)
0r dy/dx+0.5sec2(45-x/2) = 0
1-sinx/1-sinx=
= 1-cos(90-x)/1+cos(90-x)
= 1-1+2Sin2(45-(x/2))/1+2cos2(45-(x/2))-1
= [tan(45-x/2)]2
hence y= [tan2(45-x/2)]1/2
y= tan (45-x/2)
dy/dx= sec2(45-x/2) . {0-1/2}
dy/dx= -0.5sec2(45-x/2)
0r dy/dx+0.5sec2(45-x/2) = 0
Similar questions
Hindi,
8 months ago
History,
8 months ago
Psychology,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago