Math, asked by Anonymous, 2 days ago

differentiate √tan x​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm \:  \sqrt{tanx}  \\

Let assume that

\rm \:  f(x) = \sqrt{tanx}  \\

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}f(x) =\dfrac{d}{dx} \sqrt{tanx}  \\

can be rewritten as

\rm \: f'(x) = \dfrac{d}{dx} {\bigg(tanx \bigg) }^{\dfrac{1}{2} }  \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \: }} \\

So, using this result, we get

\rm \: f'(x) = \dfrac{1}{2} {\bigg(tanx \bigg) }^{\dfrac{1}{2}  - 1}\dfrac{d}{dx}tanx  \\

\rm \: f'(x) = \dfrac{1}{2} {\bigg(tanx \bigg) }^{ - \dfrac{1}{2}} {sec}^{2}x   \\

\rm \: f'(x) = \dfrac{1}{2{\bigg(tanx \bigg) }^{\dfrac{1}{2}}} {sec}^{2}x   \\

\rm\implies \:\rm \: f'(x) =\dfrac{1}{2 \sqrt{tanx} }   \times {sec}^{2}x   \\

Or

\rm\implies \:\rm \: f'(x) =\dfrac{ {sec}^{2} x}{2 \sqrt{tanx} } \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf   {e}^{x}   & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Answered by talpadadilip417
3

Step-by-step explanation:

Use Chain Rule on  \displaystyle \rm\frac{d}{dx} \sqrt{\tan{x}} Let u=tanx.

Since \rm\sqrt{u}={u}^{\frac{1}{2}} , using the Power Rule, \displaystyle\rm\frac{d}{du} {u}^{\frac{1}{2}}=\frac{1}{2}{u}^{-\frac{1}{2}}

 \\   \implies\rm\pmb{\frac{1}{2\sqrt{\tan{x}}} \bigg(\frac{d}{dx} \tan{x} \bigg)}

 \\  \colorbox{olive}{  \boxed{ \red{\implies\rm { \frac{ \sec {}^{2} (x) }{2 \sqrt{ \tan(x) } } }}}}

Similar questions