Math, asked by Tae334, 8 months ago

Differentiate :
 {a}^{x}( x +  {1 \div x})^{10}

Answers

Answered by BrainlyPopularman
10

GIVEN :

A function  \bf \: {a}^{x} \bigg( x +  \dfrac{1}{ x} \bigg)^{10}

TO FIND :

• Differentiate form = ?

SOLUTION :

• Let the function be –

 \\  \bf \implies y = {a}^{x} \bigg( x +  \dfrac{1}{ x} \bigg)^{10} \\

• Using identity –

 \\ \bf \implies \dfrac{d(u.v)}{dx} =  u \dfrac{dv}{dx} + v \dfrac{du}{dx}\\

• So that –

 \\  \bf \implies \dfrac{dy}{dx} = {a}^{x}. \dfrac{d}{dx}  \bigg( x +  \dfrac{1}{ x} \bigg)^{10} + \bigg( x +  \dfrac{1}{ x} \bigg)^{10}. \dfrac{d( {a}^{x})}{dx} \\

 \\  \bf \implies \dfrac{dy}{dx} = {a}^{x}. (10) \bigg( x +  \dfrac{1}{ x} \bigg)^{10 - 1} \bigg(1 - \dfrac{1}{ {x}^{2} }  \bigg)+ \bigg( x +  \dfrac{1}{ x} \bigg)^{10}. {a}^{x} log(x) \\

 \\  \bf \implies \dfrac{dy}{dx} = 10{a}^{x}\bigg( x +  \dfrac{1}{ x} \bigg)^{9} \bigg(1 - \dfrac{1}{ {x}^{2} }  \bigg)+ \bigg( x +  \dfrac{1}{ x} \bigg)^{10}. {a}^{x} log(x) \\

 \\  \bf \implies \dfrac{dy}{dx} = 10{a}^{x}\bigg( x +  \dfrac{1}{ x} \bigg)^{9} \bigg(1 - \dfrac{1}{ {x}^{} }  \bigg)\bigg(1  +  \dfrac{1}{ {x}^{} }  \bigg)+ \bigg( x +  \dfrac{1}{ x} \bigg)^{10}. {a}^{x} log(x) \\

 \\  \bf \implies \dfrac{dy}{dx} = 10{a}^{x}\bigg( x +  \dfrac{1}{ x} \bigg)^{10} \bigg(1 - \dfrac{1}{ {x}^{} }  \bigg)+ \bigg( x +  \dfrac{1}{ x} \bigg)^{10}. {a}^{x} log(x) \\

 \\  \bf \implies \dfrac{dy}{dx} ={a}^{x}\bigg( x +  \dfrac{1}{ x} \bigg)^{10} \bigg \{10 \bigg(1 - \dfrac{1}{ {x}^{} }  \bigg)+ log(x) \bigg \} \\

 \\  \bf \implies \dfrac{dy}{dx} ={a}^{x}\bigg( x +  \dfrac{1}{ x} \bigg)^{10} \bigg \{10 - \dfrac{10}{x} + log(x) \bigg \} \\


Anonymous: Nice ( ◜‿◝ )♡
BrainlyPopularman: Thanks ♡
Anonymous: ( ◜‿◝ )♡
Vamprixussa: Awesome !
BrainlyPopularman: Thank you ♥️
Similar questions