Math, asked by Tae334, 8 months ago

Differentiate
 {e}^{2x}
from first principles​

Answers

Answered by Anonymous
19

AnswEr :

Given \sf \: f(x) =  {e}^{2x}

Using first principle,

 \implies \sf \: f'(x) = \lim_ {h \longrightarrow \: 0} \sf  \dfrac{ {e}^{2(x \:  + h)} -  {e}^{2x}  }{h}  \\  \\  \implies \sf f'(x) =\lim_ {h \: \longrightarrow  0}  \:  \dfrac{ {e}^{2x}. {e}^{2h}  -  {e}^{2x}  }{h}  \\  \\ \implies \sf \: f'(x) =  \lim_ {h \: \longrightarrow  0}\:  \dfrac{ {e}^{2x}({e}^{2h}   -   1)  }{h} \\  \\ \implies \sf \: f'(x) ={e}^{2x}  \lim_ {h \: \longrightarrow  0}  \:  \dfrac{({e}^{2h}   -   1)  }{h}

Multiplying and Dividing by 2,

 \implies \sf \: f'(x) =  2{e}^{2x}\lim_ {2h \: \longrightarrow  0}  \:  \dfrac{({e}^{2h}   -   1)  }{2h}  \\

Using the formula,

 \sf \lim_ {x \longrightarrow \: 0}  \:  \dfrac{ {e}^{x}  - 1}{x} = 1  \\

Thus,

 \implies \sf \: f'(x) =  2{e}^{2x}  \:  \times 1 \\  \\  \implies \boxed{ \boxed{ \sf f'(x) =  2{e}^{2x}}}


BrainlyPopularman: Nice ♥️
Anonymous: Thank you!
Similar questions