Math, asked by Anonymous, 3 months ago

Differentiate
 f(x) = e^{xlog~a} + e^{alog~x}+e^{a log~a}

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

f(x) =  {e}^{x log(a) }  +  {e}^{a log(x) }  +  {e}^{a log(a) }  \\

Using properties of log,

f(x) =  {e}^{log(a ^{x} ) }  +  {e}^{ log(x ^{a} ) }  +  {e}^{log(a ^{a} ) }  \\

f(x) =  {a}^{x}  +  {x}^{a}  +  {a}^{a}  \\

Differentiating both sides w.r.t x, we have,

f^{\prime}(x) =  { a}^{x} .  ln(a) + a {x}^{a - 1}    + 0 \\

f^{\prime}(x) =  { a}^{x} .  ln(a) + a {x}^{a - 1}     \\

Similar questions