Math, asked by aaryan1258, 1 year ago

differentiate
y =  log_{7}( logx )

Answers

Answered by Anonymous
10

y =  log_{7}(logx)  \\  \\ by \: using \: the \: property \: of \: log\\  y =  \frac{ log_{e}log(x) }{ log_{e}(7) }  \\  \\ on \: differentiating \: both \: sides \\  \\  \frac{dy}{dx}  =  \frac{d}{dx} (\frac{ log_{e}log(x) }{ log_{e}(7) }) \\  \\ since \:  log_{e}(7) is \: a \: constant \: term \\  \frac{dy}{dx}  =  \frac{1}{{ log_{e}(7) }}  \frac{d}{dx} (log_{e}logx)  \\  \\  \frac{dy}{dx}  =  \frac{1}{{ log_{e}(7) }} \times  \frac{1}{ log(x) }  \times  \frac{d}{dx}  log(x)  \\  \frac{dy}{dx}  =  \frac{1}{{ log_{e}(7) }} \times  \frac{1}{ log(x) }  \times   \frac{1}{x}  \\  \frac{dy}{dx}  =  \frac{1}{x log(7) log(x)  }


⭐ HOPE IT MAY HELP YOU⭐
Similar questions