Math, asked by nehajhank07, 1 month ago

Differentiate
y =  \sqrt{sin \: log \: e \:  \sqrt{x} }
by chain rule.​

Answers

Answered by senboni123456
12

Step-by-step explanation:

We have,

 \rm \: y =  \sqrt{ \sin( log_{e}( \sqrt{x} ) ) }

We know,  \rm\log_{e}(a)=ln(a), so,

 \rm \: y =  \sqrt{ \sin( ln( \sqrt{x} ) ) }

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 2\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \frac{d}{dx} \{  \sin( ln( \sqrt{x} ) ) \} \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 2\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) . \frac{d}{dx} \{  ln( \sqrt{x} ) \} \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 2\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) .   \frac{1}{\sqrt{x}} . \frac{d}{dx}( \sqrt{x}  )\\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 2\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) .   \frac{1}{\sqrt{x}} .  \frac{1}{2\sqrt{x} } \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 4\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) .   \frac{1}{\sqrt{x}} .  \frac{1}{\sqrt{x} } \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 4\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) .   \frac{1}{x}  \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{ 4x\sqrt{ \sin( ln( \sqrt{x} ) ) } } . \cos( ln( \sqrt{x} ) ) \\

 \rm \:  \implies \:  \frac{dy}{dx}  =  \frac{\cos( ln( \sqrt{x} ) )}{ 4x\sqrt{ \sin( ln( \sqrt{x} ) ) } }  \\

Similar questions