Math, asked by harshithaofficial23, 2 months ago

Differentiate the above with clear steps.

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {\bigg(sin }^{\dfrac{5}{2} }{e}^{x}\bigg)

Let assume that,

\rm :\longmapsto\:y =  {\bigg(sin }^{\dfrac{5}{2} }{e}^{x}\bigg)

can be rewritten as

\rm :\longmapsto\:y =  {\bigg(sin{e}^{x}\bigg) }^{\dfrac{5}{2} }

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg(sin{e}^{x}\bigg) }^{\dfrac{5}{2} }

We know,

\boxed{ \bf{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{5}{2} {\bigg(sin{e}^{x}\bigg) }^{\dfrac{5}{2}  - 1} \: \dfrac{d}{dx}sin{e}^{x}

We know,

 \purple{\boxed{ \bf{ \dfrac{d}{dx}sinx = cosx}}}

So using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{5}{2} {\bigg(sin{e}^{x}\bigg) }^{\dfrac{3}{2}} \: cos{e}^{x}\dfrac{d}{dx}{e}^{x}

We know,

 \green{\boxed{ \bf{ \dfrac{d}{dx}{e}^{x} = {e}^{x}}}}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{5}{2} {\bigg(sin{e}^{x}\bigg) }^{\dfrac{3}{2}} \: cos{e}^{x} \times {e}^{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{5 \: {e}^{x} \: cos{e}^{x}}{2} {\bigg(sin{e}^{x}\bigg) }^{\dfrac{3}{2}} \:

Additional Information :-

 \green{\boxed{ \bf{ \dfrac{d}{dx}{a}^{x} = {a}^{x}loga}}}

\green{\boxed{ \bf{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

.

\green{\boxed{ \bf{ \dfrac{d}{dx}logx =  \frac{1}{x}}}}

\green{\boxed{ \bf{ \dfrac{d}{dx} log_{a}(x) =  \frac{1}{x \: loga}}}}

\green{\boxed{ \bf{ \dfrac{d}{dx}k = 0}}}

\green{\boxed{ \bf{ \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}}

\green{\boxed{ \bf{ \dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}}}

Similar questions