Math, asked by harshithaofficial23, 1 month ago

Differentiate the above with clear steps

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Differentiate the following function with respect to x

\rm :\longmapsto\:y =  {sin}^{ - 1}(logx)

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {sin}^{ - 1}(logx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {sin}^{ - 1}(logx)

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}{sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {(logx)}^{2} } } \dfrac{d}{dx} \: logx

We know that,

\boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {(logx)}^{2} } } \times  \dfrac{1}{x} \:

So,

\bf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x \sqrt{1 -  {(logx)}^{2} } }

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}{cos}^{ - 1}x =  -   \: \frac{1}{ \sqrt{1 -  {x}^{2} } } }}

\boxed{ \bf{ \: \dfrac{d}{dx}{tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} }}}

\boxed{ \bf{ \: \dfrac{d}{dx}{cot}^{ - 1}x =   -  \: \frac{1}{1 +  {x}^{2} }}}

\boxed{ \bf{ \: \dfrac{d}{dx}{sec}^{ - 1}x =  \frac{1}{ x\sqrt{ {x}^{2} - 1 } } }}

\boxed{ \bf{ \: \dfrac{d}{dx}{cosec}^{ - 1}x =  -  \:  \frac{1}{ x\sqrt{ {x}^{2} - 1 } } }}

\boxed{ \bf{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \bf{ \: \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga}}

Similar questions