Math, asked by harshithaofficial23, 1 month ago

Differentiate the above with clear steps

Attachments:

Answers

Answered by sudaisfarooq8
1

explanation:

y=tanx^sinx

logy=sinx log tanx

(1/y)(dy/dx) =cosx(log tanx) + sinx(1/tanx) sec^2x

dy/dx=y{cosx(log tanx) +(sinx÷cosx/sinx) 1/cos^2x

dy/dx=y{(cosxlog(tanx) +(1/cosx) }

dy/dx=y{secx+(cosx(logtanx) }

Answered by mathdude500
1

\large\underline{\sf{Given \:Question - }}

Differentiate the following function with respect to x

\rm :\longmapsto\:y =  {tanx}^{sinx}

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {tanx}^{sinx}

Taking log on both sides, we get

\rm :\longmapsto\:logy =  log \: {tanx}^{sinx}

We know,

\boxed{ \bf{ \: log {x}^{y} = y \: logx}}

So, using this, we get

\rm :\longmapsto\:logy  \: =  \: sinx \: log \: tanx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy  \: =  \dfrac{d}{dx}\: sinx \: log \: tanx

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

and

\boxed{ \bf{ \: \dfrac{d}{dx}uv \:  =  \:v\dfrac{d}{dx}u  + u\dfrac{d}{dx}v}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}y = sinx\dfrac{d}{dx}logtanx + logtanx\dfrac{d}{dx}sinx

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  = sinx\dfrac{1}{tanx}\dfrac{d}{dx}tanx + logtanx \: (cosx)

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2} x}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  = sinx \times \dfrac{cosx}{sinx}  \times {sec}^{2}x + logtanx \: (cosx)

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =cosx  \times {sec}^{2}x + logtanx \: (cosx)

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  = {sec}^{}x + logtanx \: (cosx)

\rm :\longmapsto\:\dfrac{dy}{dx}  =y\bigg[ {sec}^{}x + logtanx \: (cosx)\bigg]

\bf :\longmapsto\:\dfrac{dy}{dx}  = {tanx}^{sinx} \bigg[ {sec}^{}x + logtanx \: (cosx)\bigg]

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosecx =  - cosecx \: cotx}}

\boxed{ \bf{ \: \dfrac{d}{dx}secx =  secx \: tanx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =  -  \:  {cosec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

Similar questions