Math, asked by harshithaofficial23, 20 days ago

Differentiate the above. Write clear steps.

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y =  {e}^{ {sin}^{ - 1}  {x}^{2} }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{dy}{dx}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {e}^{ {sin}^{ - 1}  {x}^{2} }

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: y =\dfrac{d}{dx} \: {e}^{ {sin}^{ - 1}  {x}^{2} }

We know,

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \: {e}^{ {sin}^{ - 1}  {x}^{2} } \: \dfrac{d}{dx} \: { {sin}^{ - 1}  {x}^{2} }

We know,

\boxed{ \rm{ \dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}

So, using this, we have

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \: {e}^{ {sin}^{ - 1}  {x}^{2} }  \times \dfrac{1}{ \sqrt{1 -  {( {x}^{2} )}^{2} } } \: \dfrac{d}{dx} \: {{x}^{2} }

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  \dfrac{{e}^{ {sin}^{ - 1}  {x}^{2} }}{ \sqrt{1 -  {{x}^{4}}} } \: \dfrac{d}{dx} \: {{x}^{2} }

We know,

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  \dfrac{{e}^{ {sin}^{ - 1}  {x}^{2} }}{ \sqrt{1 -  {{x}^{4}}} } \:  \:  \times 2x

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  \dfrac{2x \:  \: {e}^{ {sin}^{ - 1}  {x}^{2} }}{ \sqrt{1 -  {{x}^{4}}} }

Hence,

\bf :\longmapsto\:\dfrac{dy}{dx} \:  =  \:  \dfrac{2x \:  \: {e}^{ {sin}^{ - 1}  {x}^{2} }}{ \sqrt{1 -  {{x}^{4}}} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}

\boxed{ \rm{ \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} }}}

\boxed{ \rm{ \dfrac{d}{dx} {cot}^{ - 1}x =  \frac{ -  \: 1}{1 +  {x}^{2} }}}

\boxed{ \rm{ \dfrac{d}{dx} {cos}^{ - 1}x =  \frac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } }}}

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}secx = \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =   -  \: {cosec}^{2}x}}

Similar questions