Math, asked by VedangBandi, 10 months ago

differentiate the following​

Attachments:

Answers

Answered by Nereida
14

Answer:

Given that,

  • \tt{y =\dfrac{x-4}{\sqrt{x+2}}}

We need to find,

  • \tt{y =\dfrac{dy}{dx}}

Solution:-

The Given value of y is in division, so we will follow the \sf{\dfrac{du}{dv}} method.

By this method, \sf{\dfrac{dy}{dx} = \dfrac{\dfrac{vdu}{dx}-\dfrac{udv}{dx}}{v^{2}}}

So, let us take u = x-4 and v = √(x-2)

Let us first find:- du/dx and dv/dx.

As u = x-4.

Hence, \sf{\dfrac{du}{dx}=1}

Now, As \sf{v=\sqrt{x+2}}.

So, \sf{\dfrac{dv}{dx}=\dfrac{1}{2\sqrt{x+2}}}

So, substituting the values.

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{(\sqrt{x+2} \times 1) - (x-4 \times \dfrac{1}{2\sqrt{2+x}})}{{(\sqrt{x+2})}^{2}}}

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{(\sqrt{x+2})-\dfrac{x-4}{2\sqrt{x+2}}}{x+2}}

Separating,

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{\sqrt{x+2}}{x+2} -\dfrac{\dfrac{x-4}{2\sqrt{x+2}}}{x+2}}

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{\sqrt{x+2}}{x+2}-\dfrac{x-4}{2\sqrt{x+2}\times (x+2)}}

Simplifying further,

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{1}{\sqrt{x+2}}-\dfrac{x-4}{2\times {(x+2)}^{\frac{1}{2}}\times (x+2)}}

\longrightarrow\tt{\dfrac{dy}{dx}=\dfrac{1}{\sqrt{x+2}}-\dfrac{x-4}{2\times {(x+2)}^{\frac{3}{2}}}}

\rule{200}2


Anonymous: Cool !
Nereida: Thank you
Answered by nirman95
8

Answer:

Given:

We have been provided with a function such that :

y =  \dfrac{ x - 4}{ \sqrt{x + 2} }

We need to find the derivative of y wrt x . Since the function is given in a fraction form, we need to apply Quotient Rule of Differentiation.

 \dfrac{dy}{dx}  =  \dfrac{ \bigg \{( \sqrt{x + 2} )\times \dfrac{d(x - 4)}{dx} \bigg \}    -  \bigg \{(x - 4) \times  \dfrac{d( \sqrt{x + 2} )}{dx} \bigg \} }{ { (\sqrt{x + 2} )}^{2} }

 =  >  \dfrac{dy}{dx}  =  \dfrac{ \bigg \{( \sqrt{x + 2}) \times 1 \bigg \}  -  \bigg \{(x - 4) \times  \dfrac{1}{2 \sqrt{x + 2} } \bigg \} }{x + 2}

Separating each numerator term :

 =  >  \dfrac{dy}{dx}  =  \dfrac{ \sqrt{x + 2} }{x + 2}  -  \dfrac{ \bigg( \dfrac{x - 4}{2 \sqrt{x + 2} } \bigg) }{x + 2}

 =  >  \dfrac{dy}{dx}  =  \dfrac{1}{ \sqrt{x + 2} }  -  \dfrac{x - 4}{2 {(x  + 2)}^{ \frac{3}{2} } }

So final answer is :

 \boxed{ \red{ \large{ \bold{ \dfrac{dy}{dx}  =  \dfrac{1}{ \sqrt{x + 2} }  -  \dfrac{x - 4}{2 {(x  + 2)}^{ \frac{3}{2} } } }}}}

Basic formulas used:

1) \:  \: y =  {x}^{n}

 =  >  \dfrac{dy}{dx}  = n {x}^{n - 1}

2) \:  \: y =  \dfrac{u}{v}

 =  >  \dfrac{dy}{dx}  =  \dfrac{v \frac{du}{dx} -  u\frac{dv}{dx}  }{ {v}^{2} }

Similar questions