Math, asked by rebkmacbecky11, 8 months ago

Differentiate the following:
cos²x³

Answers

Answered by Asterinn
3

\implies  {cos}^{2}  {x}^{3}

We have to differentiate the above expression.

 \implies \dfrac{d( {cos}^{2} {x}^{3} ) }{dx}

Differentiating using Chain rule:-

\implies 2cos \: x \times \dfrac{d( {cos} \: x) }{dx}  \times \dfrac{d  ({x}^{3}  )}{dx} \times  \dfrac{dx}{dx}

\implies 2cos \: x \times (  - {sin} \: x) \times3 {x}^{2}  \times 1

\implies -  2cos \: x \times{sin} \: x \times 3 {x}^{2}

We know that :-

  2cos \:{sin}x \:  =  \sin(2x)

\implies -  (2cos \: x \times{sin} \: x) \times 3 {x}^{2}

\implies -  (2cos \: x  \: {sin} \: x) \times 3 {x}^{2}

\implies -  ( {sin} \: 2x) \times 3 {x}^{2}

\implies -  3 {x}^{2}  {sin} \: 2x

Answer :

\implies \dfrac{d( {cos}^{2} {x}^{3} ) }{dx}  = -  3 {x}^{2}  {sin} \: 2x

____________________

Learn more :-

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

__________________

Answered by yug2511
1

Step-by-step explanation:

cos becomes -sin after differentiation

Attachments:
Similar questions