Math, asked by rebkmacbecky11, 8 months ago

Differentiate the following:
cot³x²​

Answers

Answered by Asterinn
7

 \implies  {\cot}^{3} ( {x}^{2} )

We have to differentiate the above expression.

\implies   \dfrac{d({\cot}^{3} ( {x}^{2} ) )}{dx}

we will use chain rule to differentiate.

\implies 3{\cot}^{2} ( {x}^{2} ) \times   \:  \dfrac{d({\cot}  {x}) }{dx} \:  \times  \dfrac{d({x}^{2}  )}{dx}

\implies 3{\cot}^{2} ( {x}^{2} ) \times    ( -   {\csc}^{2} (x) )\:  \times 2x

\implies  - 6x \: {\cot}^{2} ( {x}^{2} )  \:      {\csc}^{2} (x)

Answer :

 - 6x \: {\cot}^{2} ( {x}^{2} )  \:      {\csc}^{2} (x)

_________________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

_________________________

Answered by Anonymous
3

Given ,

The function is y = cot³x²

Differentiaing y wrt to x by using chain rule , we get

 \tt \hookrightarrow \frac{dy}{dx}  =  \frac{ {d \{cot}^{3}  {(x)}^{2}  \}}{dx}

\tt \hookrightarrow \frac{dy}{dx}  =   \frac{d \{ {cot {(x)}^{2} \} }^{3}  }{dx}

\tt \hookrightarrow \frac{dy}{dx}  = 3 \{  {cot {(x)}^{2}  \}}^{2}   \frac{d \{cot {(x)}^{2}  \}}{dx}

\tt \hookrightarrow \frac{dy}{dx}  = -  3  {cot}^{2} {(x)}^{2}   {cosec}^{2}   {(x)}^{2}  \frac{d  \{ {x}^{2}  \}}{dx}

\tt \hookrightarrow \frac{dy}{dx}  = -  3  {cot}^{2} {(x)}^{2}   {cosec}^{2}   {(x)}^{2}  2x

\tt \hookrightarrow\frac{dy}{dx}  = -  6x {cot}^{2} {(x)}^{2}    {cosec}^{2}   {(x)}^{2}

Remmember :

 \tt \frac{d \{ {x}^{n}  \}}{dx}  = n { x}^{n - 1}

 \tt \frac{d \{ cot(x) \}}{dx}  =  -  {cosec}^{2} (x)

____________ Keep Smiling

Similar questions