Math, asked by abhishek150608, 1 year ago

Differentiate the following equation with respect to x:y=loge (ax+b)
X के सबध में निम्नलिखित समीकरण को शिन करे: \uge (ax b)​

Answers

Answered by MaheswariS
3

Answer:

\bold{\frac{dy}{dx}=\frac{a}{ax+b}}

Step-by-step explanation:

I have applied chain rule to find derivative of the given function.

Given:

y=log_e(ax+b)

Take u=ax+b

Then \frac{du}{dx}=a.1+0

\implies\:\frac{du}{dx}=a

Now,

y=log_eu

\frac{dy}{du}=\frac{1}{u}

By chain rule,

\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx}

\frac{dy}{dx}=\frac{1}{u}.a

\frac{dy}{dx}=\frac{1}{ax+b}.a

\implies\:\frac{dy}{dx}=\frac{a}{ax+b}

Similar questions