Math, asked by funtriplifesss, 8 months ago

differentiate the following function​

Attachments:

Answers

Answered by Anonymous
5

Answer:

Let's assume the given expression be y.

y = \dfrac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}}

Can be rewritten as,

{y =\left( \dfrac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}}\right)\cdot \left(\dfrac{\sqrt{x+1}+ \sqrt{x-1}}{\sqrt{x+1} +\sqrt{x-1}}\right)}

{y =\left( \dfrac{(\sqrt{x+1} + \sqrt{x-1})(\sqrt{x+1} +\sqrt{x-1})}{(\sqrt{x+1} - \sqrt{x-1})(\sqrt{x+1} +\sqrt{x-1})}\right)}

{y = \dfrac{(\sqrt{x+1} + \sqrt{x-1})^2}{(\sqrt{x+1})^2 - (\sqrt{x-1})^2}}

{y = \dfrac{(\sqrt{x+1})^2 + (\sqrt{x-1})^2 + 2\sqrt{(x+1)(x-1)}}{x + 1  -x + 1 }}

{y = \dfrac{x+1 + x-1 + 2\sqrt{(x+1)(x-1)}}{2}}

{y = \dfrac{2x + 2\sqrt{(x+1)(x-1)}}{2}}

{y = x +\sqrt{(x+1)(x-1)}}

Now differentiating both sides w.r.t. x

{\dfrac{dy}{dx} = \dfrac{d}{dx}\Big(x +\sqrt{(x+1)(x-1)}\Big)}

{\dfrac{dy}{dx} = \dfrac{d}{dx}\Big(x\Big) +\dfrac{d}{dx}\Big(\sqrt{(x+1)(x-1)}\Big)}

Now, we will use the following rules,

{\bullet\qquad \dfrac{d}{dx} x^n = n\ x^{n-1}}

{\bullet\qquad \dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2\sqrt{x}}}

{\bullet\qquad \dfrac{d}{dx} f(g(x)) = f'(g(x))\ g'(x)}

{\bullet\qquad \dfrac{d}{dx} f(x) \cdot g(x) = f'(x) g(x)  + f(x) g'(x)}

Using these formulas, we get:
{\dfrac{dy}{dx} = 1 +\dfrac{1}{2\sqrt{(x+1)(x-1)}}\cdot \dfrac{d}{dx}\Big((x+1)(x-1)\Big)}

{\dfrac{dy}{dx} = 1 +\dfrac{1}{2\sqrt{x^2-1}}\cdot\Big((x+1) + (x-1)\Big)}

{\dfrac{dy}{dx} = 1 +\dfrac{(x+1) + (x-1)} {2 \sqrt{x^2-1} } }

\boxed{\dfrac{dy}{dx} = 1 +\dfrac{x} {\sqrt{x^2-1} } }

This is the required answer.

Similar questions