Math, asked by prachisubarna, 1 year ago

differentiate the following function by proper substitution​

Attachments:

Answers

Answered by Anonymous
3

Given \:  \: Question \:  \: Is \:  \:  \\  \\  \sin {}^{ - 1} ( \frac{2 \sqrt{t {}^{2}  - 1} }{t {}^{2} } )  \\  \\Answer \:   \: \:  \\  \\ put \:  \:  \: t   = sec(x) \\   \\ x =  \sec {}^{ - 1}  (t) \\   \\ \sin {}^{ - 1} ( \frac{2 \sqrt{ \sec {}^{2} (x)  - 1} }{sec {}^{2} (x)} )  \\  \\  \sin {}^{ - 1} ( \frac{2 \sqrt{ \tan {}^{2} (x) } }{ \sec {}^{2} (x) } )  \\  \\  \sin {}^{ - 1} ( \frac{2 \tan(x) }{ \sec {}^{2} ( x ) } )  \\  \\  \sin {}^{ - 1} ( \frac{2 \frac{ \sin(x) }{ \cos(x) } }{ \frac{1}{ \cos {}^{2} (x) } } )  \\  \\  \sin {}^{-1} (2 \sin(x) \cos(x)  )  \\  \\  \sin {}^{ - 1} ( \sin(2x) )  \\  \\ 2x \\  \\  2 \sec {}^{ - 1} (t)  \\  \\ f(x) = 2 \sec {}^{ - 1} ( t)  \\  \\ Now \: Differentiate \: both \: sides \: with \: respect \:  \\ to \: t \: we \: have. \\  \\ f {}^{1} (x) =  \frac{2}{x \sqrt{x {}^{2}  - 1}  }  \\  \\ so \: the \: Differentiation \:  \: of \\   \sin( \frac{2 \sqrt{t {}^{2}  - 1} }{t {}^{2} } )  \:  \:  \:  \:  \:  \: is \:  \:  \:  \:  \frac{2}{x \sqrt{x {}^{2}  - 1} }  \\  \\  \\ Note \:  \\  \\ 1) \:  \:  \:  \: 1 +  \tan {}^{2} (x)  =  \sec {}^{2} (x)  \\  \\ 2) \:  \:  \:  \: sin(2x) = 2 \sin(x)  \cos(x)  \\  \\ 3) \:  \:  \: Differentiation \:  \: of \:  \:  \sec {}^{ - 1} (x)  \:  \:  \: is \:  \:  \\  \\  \frac{1}{x \sqrt{x {}^{2}  - 1} }

Answered by Anonymous
17

\begin{lgathered} Question  \: \\ \\ \sin {}^{ - 1} ( \frac{2 \sqrt{t {}^{2} - 1} }{t {}^{2} } ) \\ \\Answer \: \: \: \\ \\ Put \: \: \: t = sec(x) \\ \\ x = \sec {}^{ - 1} (t) \\ \\ \sin {}^{ - 1} ( \frac{2 \sqrt{ \sec {}^{2} (x) - 1} }{sec {}^{2} (x)} ) \\ \\ \sin {}^{ - 1} ( \frac{2 \sqrt{ \tan {}^{2} (x) } }{ \sec {}^{2} (x) } ) \\ \\ \sin {}^{ - 1} ( \frac{2 \tan(x) }{ \sec {}^{2} ( x ) } ) \\ \\ \sin {}^{ - 1} ( \frac{2 \frac{ \sin(x) }{ \cos(x) } }{ \frac{1}{ \cos {}^{2} (x) } } ) \\ \\ \sin {}^{-1} (2 \sin(x) \cos(x) ) \\ \\ \sin {}^{ - 1} ( \sin(2x) ) \\ \\ 2x \\ \\ 2 \sec {}^{ - 1} (t) \\ \\ f(x) = 2 \sec {}^{ - 1} ( t) \\ \\ \\ Now \: Differentiate \: Both \: Sides \: With \: Respect \: \\ To \: t \: We \: Have. \\ \\ \\ f {}^{1} (x) = \frac{2}{x \sqrt{x {}^{2} - 1} } \\ \\ \\ So \: The \: Differentiation \: \: of \\ \sin( \frac{2 \sqrt{t {}^{2} - 1} }{t {}^{2} } ) \: \: \: \: \: \: is \: \: \: \: \frac{2}{x \sqrt{x {}^{2} - 1} } \\ \\ \\ \end{lgathered}

Similar questions