Differentiate the following function w.r.t.x:
Attachments:
![](https://hi-static.z-dn.net/files/d34/ea233d7eef435435e49bde9715b28cec.jpg)
Answers
Answered by
1
this is your answer plz do verify
Attachments:
![](https://hi-static.z-dn.net/files/d5c/1385adcc5a9a0cd93edcc9d7d4f1ba27.jpg)
Prnjil:
this is correct answer
Answered by
2
Solution:-
given by:-
![f(x) = y = 9 \sin(x) + \sin(3x) \\ diff \: with \: r \: to \: x \\ \frac{dy}{dx} = 9 \cos(x) + 3 \cos(x) \\ \frac{dy}{dx} = f( \frac{\pi}{3} ) = 9 \cos( \frac{3\pi}{3} ) + 3 \cos( \frac{3\pi}{3} ) \\ = 9 \times \frac{1}{2} - 3 \times \frac{1}{1} \\ = \frac{9}{2} - \frac{3}{1} \\ = \frac{9-6}{2} \\ = \frac{3}{2} f(x) = y = 9 \sin(x) + \sin(3x) \\ diff \: with \: r \: to \: x \\ \frac{dy}{dx} = 9 \cos(x) + 3 \cos(x) \\ \frac{dy}{dx} = f( \frac{\pi}{3} ) = 9 \cos( \frac{3\pi}{3} ) + 3 \cos( \frac{3\pi}{3} ) \\ = 9 \times \frac{1}{2} - 3 \times \frac{1}{1} \\ = \frac{9}{2} - \frac{3}{1} \\ = \frac{9-6}{2} \\ = \frac{3}{2}](https://tex.z-dn.net/?f=f%28x%29+%3D+y+%3D+9+%5Csin%28x%29+%2B+%5Csin%283x%29+%5C%5C+diff+%5C%3A+with+%5C%3A+r+%5C%3A+to+%5C%3A+x+%5C%5C+%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+9+%5Ccos%28x%29+%2B+3+%5Ccos%28x%29+%5C%5C+%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+f%28+%5Cfrac%7B%5Cpi%7D%7B3%7D+%29+%3D+9+%5Ccos%28+%5Cfrac%7B3%5Cpi%7D%7B3%7D+%29+%2B+3+%5Ccos%28+%5Cfrac%7B3%5Cpi%7D%7B3%7D+%29+%5C%5C+%3D+9+%5Ctimes+%5Cfrac%7B1%7D%7B2%7D+-+3+%5Ctimes+%5Cfrac%7B1%7D%7B1%7D+%5C%5C+%3D+%5Cfrac%7B9%7D%7B2%7D+-+%5Cfrac%7B3%7D%7B1%7D+%5C%5C+%3D+%5Cfrac%7B9-6%7D%7B2%7D+%5C%5C+%3D+%5Cfrac%7B3%7D%7B2%7D)
☆i hope its help☆
given by:-
☆i hope its help☆
Similar questions