Math, asked by 12ahujagitansh, 19 days ago

Differentiate the following function with respect to x

 {x}^{y}. {y}^{x}  =  {a}^{b}

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm \:  {x}^{y} . {y}^{x} =  {a}^{b} \\

Taking log on both sides, we get

\rm \: log[{x}^{y} . {y}^{x}] =  log{a}^{b} \\

can be rewritten as

\rm \: log {x}^{y} + log {y}^{x} = log {a}^{b} \\

\rm \: y \: logx \:  +  \: x \: logy \:  =  \: log {a}^{b} \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}(y \: logx )\:  +  \: \dfrac{d}{dx}(x \: logy) \:  =  \: \dfrac{d}{dx}log {a}^{b} \\

Using product rule of differentiation,

\boxed{\tt{ \dfrac{d}{dx} \: uv \:  =  \: u \: \dfrac{d}{dx}v \:  +  \: v \: \dfrac{d}{dx}u \: }} \\

So, using this, we get

\rm \: y\dfrac{d}{dx}logx + logx\dfrac{d}{dx}y + x\dfrac{d}{dx}logy + logy\dfrac{d}{dx}x = 0

We know,

\boxed{\tt{ \:  \:  \dfrac{d}{dx}logx =  \frac{1}{x}}} \:  \:  \\  \\ \boxed{\tt{ \:  \:  \:  \dfrac{d}{dx}k \:  =  \: 0 \ \:  \: }} \\

So, using this, we get

\rm \: y \times \dfrac{1}{x} + logx\dfrac{dy}{dx} + x \times \dfrac{1}{y} \dfrac{dy}{dx} + logy \times 1= 0 \\

\rm \:  \dfrac{y}{x} + logx\dfrac{dy}{dx} + \dfrac{x}{y} \dfrac{dy}{dx} + logy= 0 \\

\rm \: logx\dfrac{dy}{dx} + \dfrac{x}{y} \dfrac{dy}{dx}=  - logy - \dfrac{y}{x} \\

\rm \: \bigg(logx + \dfrac{x}{y}\bigg) \dfrac{dy}{dx}=  -\bigg( logy + \dfrac{y}{x}\bigg) \\

\rm \: \bigg(\dfrac{ylogx + x}{y}\bigg) \dfrac{dy}{dx}=  -\bigg(\dfrac{xlogy + y}{x}\bigg) \\

\rm \: \dfrac{dy}{dx}=  -\dfrac{y}{x} \bigg(\dfrac{xlogy + y}{ylogx + x}\bigg) \\

Hence,

\rm\implies \:\rm \: \dfrac{dy}{dx}=  -\dfrac{y}{x} \bigg(\dfrac{xlogy + y}{ylogx + x}\bigg) \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered} \\

Similar questions