Math, asked by llBrainlyButterflyll, 5 hours ago

differentiate the following function with respect to x.

y = {x}^{3 \div 2} \: \: {e}^{x} \: \: logx

don't spam. ❌​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {\bigg(x\bigg) }^{\dfrac{3}{2} } \:  {e}^{x} \: logx

On taking log on both sides, we get

\rm :\longmapsto\: \: logy = log\bigg[ {\bigg(x\bigg) }^{\dfrac{3}{2} } \:  {e}^{x} \: logx\bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ logxy \:  =  \: logx \:  +  \: logy \: }}}

So, using this identity, we get

\rm :\longmapsto\:logy = log {\bigg(x\bigg) }^{\dfrac{3}{2} } + log {e}^{x} + log(logx)

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} \:  =  \: y \: logx \: }}}

So, using this, we get

\rm :\longmapsto\:logy = \dfrac{3}{2}logx + xloge + log(logx)

\rm :\longmapsto\:logy = \dfrac{3}{2}logx + x + log(logx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy =\dfrac{d}{dx}\bigg[ \dfrac{3}{2}logx + x + log(logx) \bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}}

So, using this, we get

\rm :\longmapsto\: \dfrac{1}{y} \dfrac{dy}{dx} =\dfrac{3}{2}\dfrac{d}{dx}logx + \dfrac{d}{dx}x + \dfrac{d}{dx}log(logx)

\rm :\longmapsto\: \dfrac{1}{y} \dfrac{dy}{dx} =\dfrac{3}{2} \times \dfrac{1}{x}+ 1 + \dfrac{1}{logx}\dfrac{d}{dx}(logx)

\rm :\longmapsto\: \dfrac{1}{y} \dfrac{dy}{dx} =\dfrac{3}{2x} + 1 + \dfrac{1}{x \: logx}

\rm :\longmapsto\:  \dfrac{dy}{dx} =y\bigg[\dfrac{3}{2x} + 1 + \dfrac{1}{x \: logx}\bigg]

\rm :\longmapsto\:  \dfrac{dy}{dx} ={\bigg(x\bigg) }^{\dfrac{3}{2} } \:  {e}^{x} \: logx\bigg[\dfrac{3}{2x} + 1 + \dfrac{1}{x \: logx}\bigg]

Hence,

 \red{\boxed{\tt{ \dfrac{dy}{dx} ={\bigg(x\bigg) }^{\dfrac{3}{2} } \:  {e}^{x} \: logx\bigg[\dfrac{3}{2x} + 1 + \dfrac{1}{x \: logx}\bigg]}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by UniqueGirlShahziya
28

Refer to the attachment.

Hope it helps you.

follow me for such more great answers.

@shahziyawadgeri0824 and @shahziyawadgeri284

stay positive stay happy. : )

❤️❤️❤️❤️❤️

Attachments:
Similar questions