Math, asked by swanhayden7, 1 month ago

Differentiate the following function with respect to x using first principal

f(x) = sin \sqrt{x}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = sin \sqrt{x}

So,

\rm :\longmapsto\:f(x + h) = sin \sqrt{x + h}

Using Definition of First Principal, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\sf \frac{f(x + h) - f(x)}{h}

On substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\sf \frac{sin \sqrt{x + h}  - sin \sqrt{x} }{h}

We know,

\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\sf \frac{2cos\bigg[\dfrac{ \sqrt{x + h} +  \sqrt{x} }{2} \bigg]sin\bigg[\dfrac{ \sqrt{x + h} -  \sqrt{x} }{2} \bigg]}{h}

\rm \:  =  \: 2cos\bigg[\dfrac{ \sqrt{x}  +  \sqrt{x} }{2} \bigg]\displaystyle\lim_{h \to 0}\sf \frac{sin\bigg[\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} \bigg]}{h}

\rm \:  =  \: 2cos\bigg[\dfrac{2 \sqrt{x}}{2} \bigg]\displaystyle\lim_{h \to 0}\sf \frac{sin\bigg[\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} \bigg]}{\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} } \times \dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2h}

We know,

\ \red{\rm :\longmapsto\: \boxed{ \tt{\displaystyle\lim_{x \to 0}\sf \: \frac{sinx}{x}  = 1 \: }}}

\rm \:  =  \: cos \sqrt{x} \:  \displaystyle\lim_{h \to 0}\sf  \dfrac{ \sqrt{x + h}  -  \sqrt{x} }{h}

\rm \:  =  \: cos \sqrt{x} \:  \displaystyle\lim_{h \to 0}\sf  \dfrac{ \sqrt{x + h}  -  \sqrt{x} }{h} \times  \frac{ \sqrt{x + h}  +  \sqrt{x} }{ \sqrt{x + h}  +  \sqrt{x} }

\rm \:  =  \: cos \sqrt{x} \:  \displaystyle\lim_{h \to 0}\sf  \dfrac{x + h - x }{h \: [ \sqrt{x + h} + \sqrt{x} ]}

\rm \:  =  \: cos \sqrt{x} \:  \displaystyle\lim_{h \to 0}\sf  \dfrac{h}{h \: [ \sqrt{x + h} + \sqrt{x} ]}

\rm \:  =  \: cos \sqrt{x} \:  \displaystyle\lim_{h \to 0}\sf  \dfrac{1}{\: [ \sqrt{x + h} + \sqrt{x} ] \: }

\rm \:  =  \: cos \sqrt{x} \:   \times  \: \dfrac{1}{ \sqrt{x}  +  \sqrt{x} }

\rm \:  =  \: cos \sqrt{x} \:   \times  \: \dfrac{1}{ 2\sqrt{x}}

Hence,

\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dx}sin \sqrt{x} =  \frac{cos \sqrt{x} }{2 \sqrt{x} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
7

Question:-

Differentiate the following function with respect to x using first principal

\sf \large \: f(x) = sin \sqrt{x}.

Given:-

\sf \large \: f(x) = sin \sqrt{x} .

Solution:-

\sf \large Then, f'(x) =   \sf\tt{\displaystyle \sf \large \lim_{h \to 0} } \bigg[  \sf \frac{f(x + h) - f(x)}{h} \bigg ]

 \sf \large= \sf\tt{\displaystyle \sf \lim_{h \to 0} } \bigg[  \sf\frac{sin( \sqrt{x + h} ) - sin( \sqrt{x}) }{h}  \bigg]

\sf \large = \sf\tt{\displaystyle \sf \lim_{h \to 0} } \bigg[  \sf \large\frac{2 \: cos( \frac{ \sqrt{x + h}  +  \sqrt{x} }{2} )sin( \frac{ \sqrt{x + h} -  \sqrt{x}  }{2}) }{h}  \bigg]

\sf \large = \sf\tt{\displaystyle \sf \lim_{h \to 0} }  \bigg[ \sf \large2\frac{( \frac{ \sqrt{x + h -  \sqrt{x} }) }{2})cos( \frac{ \sqrt{x + h}   +   \sqrt{x} }{2})sin( \frac{ \sqrt{x + h}  -  \sqrt{x}  }{2} )  }{h( \frac{ \sqrt{x + h}  -  \sqrt{x} }{2} )}  \bigg]

 \sf \large = \sf\tt{\displaystyle \sf \lim_{h \to 0} } \bigg[  \sf \large\frac{ \sqrt{x +h }  -  \sqrt{x} }{h}\bigg ]\sf\tt{\displaystyle \sf \lim_{h \to 0} } \bigg[ \sf \large cos( \sf \large \frac{ \sqrt{x + h} +  \sqrt{x}  }{2}) \bigg ]  \sf \large\sf\tt{\displaystyle \sf \lim_{h \to 0} } \bigg[  \sf \large\frac{ sin(\frac{ \sqrt{x + h} -  \sqrt{x}  }{2} )}{ \frac{ \sqrt{x + h} -  \sqrt{x}  }{2} }  \bigg]

\sf \large = \sf\tt{\displaystyle \sf \lim_{x \to 0} } \bigg[  \sf \large\frac{(x + h) - x}{( \sqrt{x + h}  +  \sqrt{x}  } \bigg ][cos \sqrt{x}  \: ] \sf[1]

\sf \large = cos \sqrt{x} \:  \:  \sf\tt{\displaystyle \sf \lim_{x \to 0} } \bigg[  \sf \large\frac{1}{ \sqrt{x + h} +  \sqrt{x}  }  \bigg]

 \sf \large = cos \sqrt{x} \bigg [ \frac{1}{2 \sqrt{x} }  \bigg] =  \frac{cos \sqrt{x} }{2x}

Answer:-

{  \boxed{ \sf \large \red{ \frac{d}{dx} sin \sqrt{x}  =  \frac{cos \sqrt{x} }{2x}. }}}

Hope you have satisfied.

Similar questions