Math, asked by swanhayden7, 1 day ago

Differentiate the following function with respect to x using first principal

f(x) =  \frac{2x + 1}{3x + 4}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{2x + 1}{3x + 4}  \\

So,

\rm \: f(x + h) = \dfrac{2(x + h) + 1}{3(x + h) + 4}   = \dfrac{2x + 2h + 1}{3x + 3h + 4} \\

By using Definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}  \\

On substituting the values, we get

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg(\dfrac{2x + 2h + 1}{3x + 3h + 4}  - \dfrac{2x + 1}{3x + 4}  \bigg)

\rm \:  = \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg(\dfrac{(2x + 2h + 1)(3x + 4) - (2x + 1)(3x + 3h + 4)}{(3x + 3h + 4)(3x + 4)} \bigg)  \\

\rm \:  = \displaystyle\lim_{h \to 0}\rm  \bigg(\dfrac{ {6x}^{2} + 6xh + 3x + 8x + 8h + 4 -  {6x}^{2} - 6hx - 8x - 3x - 3h - 4 }{h(3x + 3h + 4)(3x + 4)} \bigg)  \\

\rm \:  = \displaystyle\lim_{h \to 0}\rm  \bigg(\dfrac{ 5h }{h(3x + 3h + 4)(3x + 4)} \bigg)  \\

\rm \:  = \displaystyle\lim_{h \to 0}\rm  \dfrac{ 5 }{(3x + 3h + 4)(3x + 4)}  \\

\rm \:  =   \dfrac{ 5 }{(3x + 4)(3x + 4)}  \\

\rm \:  =   \dfrac{ 5 }{(3x + 4)^{2} }  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{d}{dx}\bigg(\dfrac{2x + 1}{3x + 4}\bigg) =    \frac{5}{ {(3x + 4)}^{2} }  \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick

 \:  \: \boxed{\sf{  \:\rm \:  \:  \:  \frac{d}{dx} \bigg(\frac{ax + b}{cx + d}\bigg)  =  \frac{(ad - bc)}{(cx + d)^{2} }   \:  \: \:  \: }} \\

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions