Math, asked by bhumikajindal770, 13 hours ago

Differentiate the following function with respect to x

y = log(x + sqrt{x^2 + 1})

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm \: y = log[ \: x +  \sqrt{ {x}^{2} + 1 } \: ]

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx} y =\dfrac{d}{dx} log[ \: x +  \sqrt{ {x}^{2} + 1 } \: ]

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} } \dfrac{d}{dx}(x +  \sqrt{ {x}^{2}  + 1})

We know,

\boxed{\tt{ \dfrac{d}{dx}x = 1}}

and

\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } }}

So, using these results, we get

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1}}\dfrac{d}{dx}( {x}^{2} + 1) \bigg)

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1}}(2x + 0)\bigg)

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} }\bigg(1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1}}(2x)\bigg)

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} }\bigg(1 + \dfrac{x}{ \sqrt{ {x}^{2}  + 1}}\bigg)

\rm \: \dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} }\bigg(\dfrac{ \sqrt{ {x}^{2} + 1 }  + x}{ \sqrt{ {x}^{2}  + 1}}\bigg)

\rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  \frac{1}{ \sqrt{ {x}^{2} + 1 } } \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions