Math, asked by pranavm798, 2 months ago

differentiate the following function (x-1/x)^2​

Answers

Answered by Asterinn
25

We have to differentiate the given function :-

 \rm y =  {\bigg (x -  \dfrac{1}{x}  \bigg)}^{2}

\rm \longrightarrow  \dfrac{dy}{dx}  =   \dfrac{d{\bigg (x -  \dfrac{1}{x}  \bigg)}^{2} }{dx} \\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times  \dfrac{d{\bigg (x -  \dfrac{1}{x}  \bigg)} }{dx}\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times \bigg ( \dfrac{d{ (x  )} }{dx} - \dfrac{d{ ( \frac{1}{x}   )} }{dx}\bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times \bigg (1- \dfrac{d{ (  {x}^{{ - 1}}   )} }{dx}\bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times \bigg (1- {( -  {x}^{ - 2} ) }\bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times \bigg (1 +  {x}^{ - 2}\bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x -  \dfrac{1}{x}  \bigg) \times \bigg (1 +   \dfrac{1}{ {x}^{2} }\bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x +  \dfrac{1}{x} -  \dfrac{1}{x} -\dfrac{1}{ {x}^{3} } \bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   2 \times \bigg(x  -\dfrac{1}{ {x}^{3} } \bigg)\\  \\ \\ \rm \longrightarrow  \dfrac{dy}{dx}  =   \dfrac{ 2{x}^{4}  - 2}{ {x}^{3} }


Anonymous: Greattttt ! : °)
Asterinn: Thank you! ( ╹▽╹ )
Similar questions