Math, asked by alisha0516, 9 months ago

Differentiate the following functions by proper substitution
sin-1 2x√1-x^2

Answers

Answered by Anonymous
1

Given ,

The function is  \sf f(x) =  {sin}^{ - 1} 2x \sqrt{1 -  {(x)}^{2} }

Let , x = Sin(Φ) => Sin^-1x = Φ , so

\sf \Rightarrow f(x) =  {sin}^{ - 1} 2sin (\theta) \sqrt{1 -  {(sin  )}^{2}(\theta) }  \\  \\\sf \Rightarrow  f(x)  =  {sin}^{ - 1} 2sin (\theta) \sqrt{  {(cos  )}^{2}(\theta) }   \\  \\\sf \Rightarrow  f(x)  = {sin}^{ - 1} 2sin (\theta)cos(\theta)  \\  \\\sf \Rightarrow  f(x)  =  {sin}^{ - 1} sin(2\theta) \\  \\\sf \Rightarrow  f(x) = 2(\theta) \\  \\\sf \Rightarrow f(x) = 2 {sin}^{ - 1}x

Now , Differentiating with respect to x , we get

\sf \Rightarrow  \frac{dy}{dx}  =  \frac{d(2 {sin}^{ - 1}x )}{dx}  \\  \\ \sf \Rightarrow  \frac{dy}{dx}  =  \frac{2}{ \sqrt{1 -  {(x)}^{2} } }

 \therefore \sf \bold{ \underline{The \:  derivative  \: of  \: given \:  function  \: is \:   \frac{2}{ \sqrt{1 -  {(x)}^{2} }  } \:  \:  \:  \:  }}

Similar questions