Physics, asked by siddhighatole3, 8 months ago

Differentiate the following functions: g(z)=4z^7-3z^-7+9z​

Answers

Answered by Anonymous
4

g(z) =

4z {}^{7}  - 3z {}^{ - 7}  + 9z

Now ,

=> g'(z) =

7 \times 4 {z}^{6}  - 3 \times ( - 7) \times  {z}^{ - 7 - 1}  + 9

=

28z {}^{6}  + 21 {z}^{ - 8}  + 9

==> FORMULAS USED ARE ,

 \frac{dx {}^{n} }{dx}  = n \times x {}^{n - 1}

Answered by Anonymous
2

Given:

 \rm g(z) = 4 {z}^{7}  - 3 {z}^{ - 7}  + 9z

To Find:

 \rm g'(z)

Answer:

 \rm \implies \dfrac{d}{dz} (g(z))  \\  \\  \rm \implies \dfrac{d}{dz} (4 {z}^{7} - 3 {z}^{7}  + 9z) \\  \\  \rm \implies\dfrac{d}{dz}(4 {z}^{7})  +  \dfrac{d}{dz}  ( - 3 {z}^{ - 7})  + \dfrac{d}{dz} (9z) \\  \\  \rm By  \: using \: power  \: rule :  \dfrac{d}{dz} ( {z}^{n} ) = n {z}^{n - 1}  :  \\  \\ \rm \implies 4 \times 7 {z}^{(7 - 1)}   - 3 \times ( - 7 {z}^{( - 7 - 1)} ) + 9 \times 1 {z}^{(1 - 1)}  \\  \\ \rm \implies  28 {z}^{6}  +  21 {z}^{-8 }  + 9 {z}^{0}  \\  \\ \rm \implies 28 {z}^{6}  +  21 {z}^{-8 }  + 9   \times 1 \\  \\ \rm \implies 28 {z}^{6}  +  21 {z}^{-8 }  + 9

 \therefore  \boxed{\mathfrak{g'(z) =28 {z}^{6}  +  21 {z}^{-8 }  + 9}}

Similar questions