Math, asked by swanhayden7, 1 month ago

Differentiate the following functions using first principal

f(x) =  {sin}^{ - 1}(2x + 3)

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {sin}^{ - 1}(2x + 3)

Let assume that,

\rm :\longmapsto\:f(x) = y =  {sin}^{ - 1}(2x + 3)

\rm :\longmapsto\:y =  {sin}^{ - 1}(2x + 3)

\rm :\longmapsto\:siny = 2x + 3

\rm :\longmapsto\:siny  - 3= 2x

\bf\implies \:x = \dfrac{siny - 3}{2}

So,

\rm :\longmapsto\:x = g(y) = \dfrac{siny - 3}{2}

So,

\rm :\longmapsto\:g(y + h) = \dfrac{sin(y + h) - 3}{2}

By using definition of First Principal, we have

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf  \frac{g(y + h) - g(y)}{h}

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf  \frac{\dfrac{sin(y + h) - 3}{2}  - \dfrac{siny - 3}{2} }{h}

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf  \frac{\dfrac{sin(y + h) - siny}{2}}{h}

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf   \frac{sin(y + h) - siny}{2h}

We know,

\red{ \boxed{ \sf{ \:sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this result, we get

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf   \frac{2cos\bigg[\dfrac{y + h + y}{2} \bigg]sin\bigg[\dfrac{y + h - y}{2} \bigg]}{2h}

\rm :\longmapsto\:g'(y) = \displaystyle\lim_{h \to 0}\sf   \frac{cos\bigg[\dfrac{2y + h}{2} \bigg]sin\bigg[\dfrac{h }{2} \bigg]}{h}

\rm :\longmapsto\:g'(y) =cosy \displaystyle\lim_{h \to 0}\sf   \frac{sin\bigg[\dfrac{h }{2} \bigg]}{\dfrac{h}{2} \times 2 }

We know,

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x} = 1}}}

So, using this, we get

\rm :\longmapsto\:g'(y) =\dfrac{1}{2} cosy

Now,

\rm :\longmapsto\:f'(x) =  \dfrac{1}{g'(y)}

\rm :\longmapsto\:f'(x) =  \dfrac{2}{cosy}

\rm :\longmapsto\:f'(x) =  \dfrac{2}{ \sqrt{1 -  {sin}^{2}y } }

\rm :\longmapsto\:f'(x) =  \dfrac{2}{ \sqrt{1 -  {(2x + 3)}^{2}} }

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by devanshusingh109
0

we are jee students ham aise solve krte h hit n trial op haha

Attachments:
Similar questions