Math, asked by DangerBoi, 10 months ago

Differentiate the following functions with respect to x
(without using first principle) :

 \sf i)  \: \sqrt{sin \: x}  \\  \\ ii) \:   \sf sin \sqrt{x}

Answers

Answered by kaushik05
130

  \huge\mathfrak{solution}

In both questions we use ,

Chain rule .

 \star \boxed{  \bold{ \frac{d}{dx} f(g(x)) = f' (x) \frac{d}{dx} g(x)}}

1) \sqrt{sin \: x}

Let

y =  \sqrt{sin \: x}

Differentiate w.r.t X both sides ,

 \rightarrow \:  \frac{dy}{dx}  =  \frac{d}{dx}  ( \sqrt{sin \: x} ) \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{sin \: x} }  \frac{d}{dx} (sin \: x) \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{sin \: x} } (cosx) \\  \\  \rightarrow \:  \frac{dy}{dx}  =  \frac{cos \: x}{2 \sqrt{sin \: x} }

2) \: sin \:  \sqrt{x}

Let

y = sin \:  \sqrt{x}

Differentiate w.r.t X both sides,

 \star \frac{dy}{dx}  =  \frac{d}{dx} (sin \:  \sqrt{x} ) \\  \\  \star  \frac{dy}{dx}  = cos \:  \sqrt{x}  \frac{d}{dx} ( \sqrt{x} ) \\  \\  \star  \frac{dy}{dx}  = cos \:  \sqrt{x} ( \frac{1}{2 \sqrt{x} } ) \\  \\  \star \:  \frac{dy}{dx}  =  \frac{cos \:  \sqrt{x} }{2 \sqrt{x} }

Formula used:

 \red \star \boxed{ \bold{  \frac{d}{dx} ( \sqrt{x} ) =  \frac{1}{2 \sqrt{x} } }}

  \green\star  \boxed{\bold{  \frac{d}{dx} (sin \: x) = cos \: x}}

Answered by Anonymous
121

\: \: \: \: \: \: \: \: \: \: \: \huge  {\red{\boxed{ \overline{ \underline{ \mid\mathfrak{An}{\mathrm{sw}{ \sf{er}}   \colon\mid}}}}}}

(1)  \sf \: \sqrt{\sin \: x}

_________________________

\sf{let \: y \: = \: \sqrt{ \sin x}} \\ \\ \implies {\sf{\dfrac{dy}{dx} \: = \: \dfrac{d}{dx} \big( \sqrt{\sin x} \big) }} \\ \\ \implies {\sf{\dfrac{dy}{dx} \: = \: \dfrac{1}{ 2 \sqrt{ \sin x}} \dfrac{d}{dx} \big( \sin x \big)}} \\ \\ \implies {\sf{\dfrac{dy}{dx} \: = \: \dfrac{1}{2 \sqrt{\sin x}} \big( \cos x \big) }} \\ \\ \implies {\sf{\dfrac{dy}{dx} \: = \: \dfrac{\cos x}{2 \sqrt{\sin x}}}}

__________________________________

(2)  \sf {\sin \sqrt{x}}

\sf{let \: y \: = \: \sin \sqrt{x}} \\ \\ \implies {\sf{\dfrac{dy}{dx}  =  \dfrac{d}{dx} \big( \sin \:  \sqrt{x} \big)}} \\  \\  \implies {\sf{ \dfrac{dy}{dx}  \: = \:  \cos \:  \sqrt{x}  \dfrac{d}{dx} \big( \sqrt{x} \big)}} \\  \\  \implies {\sf{ \dfrac{dy}{dx}  = \cos \:  \sqrt{x} \bigg( \dfrac{1}{2 \sqrt{x} } \bigg)}} \\  \\  \implies {\sf{ \dfrac{dy}{dx}  =  \dfrac{\cos \:  \sqrt{x} }{2 \sqrt{x} }}}

Similar questions