Math, asked by DangerBoi, 9 months ago

Differentiate the following functions with respect to x (without using first principle) :

i) (Sinx)^1/2​

Answers

Answered by shadowsabers03
51

We apply chain rule.

\dfrac {d}{dx}[f(g(x))]=\dfrac {d}{d[g(x)]}[f(g(x))]\cdot\dfrac {d}{dx}[g(x)]

Let,

t=\sin x\\\\\\\dfrac {dt}{dx}=\cos x

Then,

\dfrac {d}{dx}\left[t^{\frac {1}{2}}\right]=\dfrac {d}{dt}\left[t^{\frac {1}{2}}\right]\cdot\dfrac {dt}{dx}\\\\\\\dfrac {d}{dx}\left[t^{\frac {1}{2}}\right]=\dfrac {1}{2}t^{-\frac {1}{2}}\cdot\dfrac {dt}{dx}\\\\\\\dfrac {d}{dx}\left[t^{\frac {1}{2}}\right]=\dfrac {1}{2t^{\frac {1}{2}}}\cdot\dfrac {dt}{dx}

That is,

\underline{\underline {\dfrac {d}{dx}(\sin x)^{\frac {1}{2}}=\dfrac {\cos x}{2(\sin x)^{\frac {1}{2}}}}}

Answered by Anonymous
47

Answer :

y' = cos x/2√sin x

Step-by-step explanation:

Let y = (sin x)½

To finD the derivative of y w.r.t x

We use the power rule first, followed by the chain rule

 \longrightarrow  \sf \: y' =  \dfrac{1}{2} \times  {sin}^{ \frac{1}{2} - 1 } x \\  \\  \longrightarrow \:  \sf \: y' =  \dfrac{1}{2 \: \sqrt{sin \: x} }  \times  \frac{d(sin \: x)}{dx}  \\  \\  \longrightarrow \:  \sf \: y' =  \dfrac{cos \: x}{2 \sqrt{sin \: x} }

Similar questions