Physics, asked by sachinpal799, 9 months ago

Differentiate the following functions with respect to x (a) x^(3) + 5x^(2) - 2 (b) x sin x (c) (2x + 3)^(6) (d) (x)/ (sinx) (e) e^((5x+2))

Answers

Answered by qwchair
0

(a) 3x^2 + 10x

(b)xcosx+sinx

(C)6(2x+3)^5(2)

(D)-xsinx^-2cosx + sinx^-1

(E) 5e^(5x+2)

Answered by MaheswariS
2

\text{(a)}

y=x^3+5x^2-2

\implies\bf\frac{dy}{dx}=3x^2+10x

\text{(b)}

y=x\;sinx

\text{Using product rule of differentiation}

\boxed{\bf\frac{d(uv)}{dx}=u\;\frac{dv}{dx}+v\;\frac{du}{dx}}

\frac{dy}{dx}=x(cosx)+sinx(1)

\implies\bf\frac{dy}{dx}=x\,cosx+sinx

\text{(c)}

y=(2x+3)^6

\frac{dy}{dx}=6(2x+3)^5(2)

\implies\bf\frac{dy}{dx}=12(2x+3)^5

\text{(d)}

y=\frac{x}{sinx}

\text{Using quotient rule of differentiation}

\boxed{\bf\frac{d(u/v)}{dx}=\frac{v\,\frac{du}{dx}-u\,\frac{dv}{dx}}{v^2}}

\frac{dy}{dx}=\frac{sinx(1)-x(cosx)}{sin^2x}

\implies\bf\frac{dy}{dx}=\frac{sinx-x\,cosx}{sin^2x}

\text{(e)}

y=e^{5x+2}

\frac{dy}{dx}=e^{5x+2}(5)

\implies\bf\frac{dy}{dx}=5e^{5x+2}

Similar questions