Math, asked by perfect9359, 9 months ago

Differentiate the following functions with respect to x : \large\frac{x+e^x}{1+log_x}

Answers

Answered by Anonymous
37

\rule{320}4

\huge\tt\underline{QUESTION}\::

Differentiate the following functions with respect to x : \Large\sf\frac{x\:+\:e^x}{1\:+\:log_x}

\rule{320}4

\huge\tt\underline{SOLUTION}\::

\sf {\huge\dashrightarrow}{\large \:\:\:\:\:y \:=\: {\Large\frac{x\:+\:e^x}{1\:+\:log_x}}}

\sf {\Large\dashrightarrow}{\large\:\:\:\:\: \frac{d_y}{d_x}\:=\:\frac{ (1+log_x)\:\frac{d}{d_x}\:(x+e^x)\:-\:(x+e^x)\:\frac{d}{d_x}\:(1+log_x)  }{(1+log_x)^2  }}

\sf {\Large\dashrightarrow} {\large \:\:\:\:\:\frac{d_y}{d_x}\:=\:\frac{ (1+log_x)\:(1+e^x)\:-\:(x+e^x)\:(\frac{1}{x}) }{(1+log_x)^2 }}

\sf {\Large\dashrightarrow}{\large  \:\:\:\:\:\frac{d_y}{d_x}\:=\:\frac{(1\:+\:e^x)  }{(1\:+\:log_x)}\:-\:\frac{(x\:+\:e^x)}{x(1\:+\:log_x)^2}}

\rule{320}4

Similar questions