Math, asked by Asmitaubale, 14 days ago

differentiate the following functions with respect to X
y =  \frac{ \sqrt{ x}+1 }{ \sqrt{x  - 1} }
Its a JEE qn. please answer!!!​

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

y = \frac{ \sqrt{ x}+1 }{ \sqrt{x - 1} } \\

 \implies \:  \frac{dy}{dx}  =  \frac{d}{dx}  \bigg(\frac{ \sqrt{ x}+1 }{ \sqrt{x - 1} }  \bigg)\\

 \implies \:  \frac{dy}{dx}  =\frac{ \sqrt{x - 1} .  \dfrac{d}{dx} (\sqrt{ x}+1)  - ( \sqrt{x} + 1). \dfrac{d}{dx} ( \sqrt{x - 1} ) }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \sqrt{x - 1} .   \dfrac{1}{2 \sqrt{x} }   - ( \sqrt{x} + 1). \dfrac{1}{2 \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{  \dfrac{\sqrt{x - 1}}{2 \sqrt{x} }   - \dfrac{ \sqrt{x} + 1 }{2 \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ ( \sqrt{x - 1})^{2}  - \sqrt{x} ( \sqrt{x} + 1 )}{2. \sqrt{x}.  \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ x - 1-  ( x + \sqrt{x} )}{2. \sqrt{x}.  \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ x - 1-  x  - \sqrt{x} }{2. \sqrt{x}.  \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ - 1 - \sqrt{x} }{2. \sqrt{x}.  \sqrt{x - 1} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ - ( \sqrt{x}  + 1)}{2  \sqrt{x^{2} - x} }  }{ (\sqrt{x - 1} ) ^{2} }  \\

 \implies \:  \frac{dy}{dx}  =\frac{ \dfrac{ - ( \sqrt{x}  + 1)}{2  \sqrt{x^{2} - x} }  }{x - 1 }  \\

 \implies \:  \frac{dy}{dx}  =\dfrac{ - ( \sqrt{x}  + 1)}{2  \sqrt{x^{2} - x}  (x - 1 ) } \\

Similar questions