Math, asked by Anonymous, 10 months ago

Differentiate the following :

If  y = \sqrt{{x}^{2}+1}-log \bigg(\dfrac{1}{x} + \sqrt{x + \dfrac{1}{{x}^{2}}}\bigg)

Answers

Answered by Swarup1998
2

\mathsf{\frac{dy}{dx}=\frac{x}{\sqrt{x^{2}+1}}-\frac{3}{2}.\frac{x^{2}}{(1+\sqrt{x^{3}+1})\sqrt{x^{3}+1}}+\frac{1}{x}}

Step-by-step explanation:

Let us differentiate each term separately and it will make the understandings easier.

1st term = \mathsf{\sqrt{x^{2}+1}}

             = \mathsf{(x^{2}+1)^{\frac{1}{2}}}

Differentiating with respect to x, we get

  \mathsf{\frac{d}{dx}(\sqrt{x^{2}+1})}

\mathsf{=\frac{d}{dx}(x^{2}+1)^{\frac{1}{2}}}

\mathsf{=\frac{1}{2}.(x^{2}+1)^{\frac{1}{2}-1}.\frac{d}{dx}(x^{2}+1)}

\mathsf{=\frac{1}{2}.(x^{2}+1)^{-\frac{1}{2}}.2x}

\mathsf{=\frac{x}{\sqrt{x^{2}+1}}}

2nd term = \mathsf{log\big(\frac{1}{x}+\sqrt{x+\frac{1}{x^{2}}}\big)}

               = \mathsf{log\big(\frac{1}{x}+\frac{1}{x}\sqrt{x^{3}+1}\big)}

               = \mathsf{log\{\frac{1}{x}(1+\sqrt{x^{3}+1})\}}

               = \mathsf{log(1+\sqrt{x^{3}+1})-logx}

Differentiating with respect to x, we get

  \mathsf{\frac{d}{dx}\big[log\big(\frac{1}{x}+\sqrt{x+\frac{1}{x^{3}}}\big)\big]}

\mathsf{=\frac{d}{dx}\{log(1+\sqrt{x^{3}+1})-logx\}}

\mathsf{=\frac{d}{dx}\{log(1+\sqrt{x^{3}+1})\}-\frac{d}{dx}(logx)}

\mathsf{=\frac{1}{1+\sqrt{x^{3}+1}}.\frac{d}{dx}(1+\sqrt{x^{3}+1})-\frac{1}{x}}

\mathsf{=\frac{1}{1+\sqrt{x^{3}+1}}.\frac{d}{dx}(x^{3}+1)^{\frac{1}{2}}-\frac{1}{x}}

\mathsf{=\frac{1}{1+\sqrt{x^{3}+1}}.\frac{1}{2}.(x^{3}+1)^{\frac{1}{2}-1}.\frac{d}{dx}(x^{3}+1)-\frac{1}{x}}

\mathsf{=\frac{1}{1+\sqrt{x^{3}+1}}.\frac{1}{2}.(x^{3}+1)^{-\frac{1}{2}}.3x^{2}-\frac{1}{x}}

\mathsf{=\frac{3}{2}.\frac{x^{2}}{(1+\sqrt{x^{3}+1})\sqrt{x^{3}+1}}-\frac{1}{x}}

Now we put the differentiated values of the first and the second term in the differentiation of y with respect to x, i.e.,

\mathsf{\frac{dy}{dx}=\frac{x}{\sqrt{x^{2}+1}}-\frac{3}{2}.\frac{x^{2}}{(1+\sqrt{x^{3}+1})\sqrt{x^{3}+1}}+\frac{1}{x}}


Anonymous: thanks a lot bhaiya :))
Answered by MysteriousAryan
12

Answer:

 \tan(96) \pi \gamma  \cot(87)

this \: is \: the \: formulae

hope \: it \: helps \: you

Similar questions