Math, asked by akashaw2003, 11 months ago

differentiate the following ​.
jo koi solve karega use

Attachments:

Answers

Answered by Anonymous
45

Solution :-

We have

 \sf{ y = sin^{-} ( 2x\sqrt{1 - x^2})}

Now in order to solve it let us put

 \sf{ x = sin\theta }

 \implies \sf{ \theta = sin^{-}x}

By using x = sin∅

 \implies \sf{ y = sin^{-} ( 2sin\theta\sqrt{1 - \sin^2\theta})}

\implies  \sf{ y = sin^{-} ( 2sin\theta\sqrt{cos^2\theta})}

\implies  \sf{ y = sin^{-} ( 2sin\theta cos\theta)}

As 2sin∅cos∅ = sin2∅

\implies  \sf{ y = sin^{-} ( sin2\theta)}

\implies \sf{ y = 2\theta}

or

 \implies \sf{ y = 2sin^{-} x }

Now differentiate y w.r.t. x

 =   \sf{ \dfrac{dy}{dx} }

 =   \sf{ \dfrac{d(2 sin^{-}x)}{dx} }

 =   \sf{ 2.\dfrac{d(sin^{-}x)}{dx} }

Now as

  \sf{\bold{ \dfrac{d(sin^{-}x)}{dx}= \dfrac{1}{\sqrt{1 - x^2 }} }}

 =   \sf{ 2 \dfrac{1 }{\sqrt{1 - x^2}} }

 = \sf{ \dfrac{2 }{\sqrt{1 - x^2}} }

Answered by anshi60
5

Answer:

y =  \sin {}^{ - 1} (2x \sqrt{1 - x {}^{2} } )

let x = sin ß

thus

 \sin {}^{ - 1} (x)  =  \beta

therefore ;

y =  \sin {}^{ - 1} (2  \sin( \beta ) \sqrt{1 -  \sin {}^{2} ( \beta ) }   )

y =  \sin {}^{ - 1} (2 \sin( \beta ) \cos( \beta)  )

y =  \sin {}^{ - } ( \sin(2 \beta ) )

y = 2 \beta

y = 2 \sin {}^{ - 1} (x)

now differnatiate with respect to x

 \frac{dy}{dx}  = 2  \times \frac{1}{ \sqrt{1 - x {}^{2} } }

i hope it helps you

follow me

Similar questions