Math, asked by avanshh09, 2 months ago

differentiate the following
please help me to solve this question I want it urgent​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \sqrt{ \frac{ {x}^{2} +  {a}^{2}  }{ {x}^{2} -  {a}^{2}  } } . \sqrt[3]{ \frac{ {x}^{2} -  {a}^{2}  }{ {x}^{2}  +  {a}^{2} } }  \\

 \implies \: y =   \bigg( \frac{ {x}^{2}  -   {a}^{2}  }{ {x}^{2}  +   {a}^{2}  }  \bigg) ^{ -  \frac{1}{2} } .  \bigg( \frac{ {x}^{2} -  {a}^{2}  }{ {x}^{2}  +  {a}^{2} }  \bigg)^{ \frac{1}{3} } \\

 \implies \: y =   \bigg( \frac{ {x}^{2}  -   {a}^{2}  }{ {x}^{2}  +   {a}^{2}  }  \bigg) ^{  \frac{1}{3} -  \frac{1}{2} } \\

 \implies \: y =   \bigg( \frac{ {x}^{2}  -   {a}^{2}  }{ {x}^{2}  +   {a}^{2}  }  \bigg) ^{   - \frac{1}{3}  } \\

 \implies \: y =   \bigg( \frac{ {x}^{2}   +   {a}^{2}  }{ {x}^{2}   -    {a}^{2}  }  \bigg) ^{   \frac{1}{3}  } \\

Differentiating both sides w.r.t. x,

 \implies \:  \frac{dy}{dx}  = \frac{1}{3}    \bigg( \frac{ {x}^{2}   +   {a}^{2}  }{ {x}^{2}   -    {a}^{2}  }  \bigg) ^{   \frac{1}{3} - 1  } . \frac{d}{dx} \bigg \{   \frac{ {x}^{2}  +  {a}^{2} }{  {x}^{2}  -  {a}^{2}  } \bigg \}\\

 \implies \:  \frac{dy}{dx}  = \frac{1}{3}    \bigg( \frac{ {x}^{2}   +   {a}^{2}  }{ {x}^{2}   -    {a}^{2}  }  \bigg) ^{    - \frac{2}{3}  } .  \bigg \{ \frac{( {x}^{2}  -  {a}^{2} ) .\frac{d}{dx}   ({x}^{2}  +  {a}^{2} ) - ( {x}^{2} +  {a}^{2}). \frac{d}{dx} ( {x}^{2} - a ^{2} )  }{  ({x}^{2}  -  {a}^{2} )^{2}  } \bigg \}\\

 \implies \:  \frac{dy}{dx}  = \frac{1}{3}    \bigg( \frac{ {x}^{2}    -   {a}^{2}  }{ {x}^{2}    +     {a}^{2}  }  \bigg) ^{  \frac{2}{3}  } .  \bigg \{ \frac{2x( {x}^{2}  -  {a}^{2} )  - 2x( {x}^{2} +  {a}^{2}) }{  ({x}^{2}  -  {a}^{2} )^{2}  } \bigg \}\\

 \implies \:  \frac{dy}{dx}  = \frac{1}{3}    \bigg( \frac{ {x}^{2}    -   {a}^{2}  }{ {x}^{2}    +     {a}^{2}  }  \bigg) ^{  \frac{2}{3}  } .  \bigg \{ \frac{2 {x}^{3}  - 2 {a}^{2} x  - 2 {x}^{3}  -   2{a}^{2}x}{  ({x}^{2}  -  {a}^{2} )^{2}  } \bigg \}\\

 \implies \:  \frac{dy}{dx}  = \frac{1}{3}    \bigg( \frac{ {x}^{2}    -   {a}^{2}  }{ {x}^{2}    +     {a}^{2}  }  \bigg) ^{  \frac{2}{3}  } .  \bigg \{ \frac{  - 4 {a}^{2} x  }{  ({x}^{2}  -  {a}^{2} )^{2}  } \bigg \}\\

Similar questions